Main Article Content


Ergosterol is an important provitamin in the present-day of industrial biotechnology. Seven yeast strains were obtained from the market of Basrah city and subjected to screening for their ergosterol production ability using liquid-state fermentation, the cultural conditions, and nutritional requirements for optimal production of ergosterol by Saccharomyces cerevisiae under laboratory conditions were determined. Y.6 is the best isolate of the yeast that produced ergosterol. It was identified as S. cerevisiae, with a similarity rate of 97% by using the Vitek2 device, this S. cerevisiae (Y.6) was further subjected to optimization conditions. The results showed that the best medium for production was yeast extract peptone dextrose broth. The effect of two cheaper carbon sources, molasses and date juice were investigated. Maximum ergosterol (0.55% ) was produced using a medium containing date juice, with a replacement ratio of 75%, an incubation time of 72 hours, pH 5, at a temperature of 30 °C, and an inoculation volume of 4 ml. The percentage of ergosterol was (0.47, 0.55, 0.74, 0.66, 0.68 and 0.78 %), respectively.


Ergosterol production Optimum conditions Saccharomyces cerevisiae Screening

Article Details

How to Cite
Ethafa, E. S., & Al-Manhel, A. J. A. . (2022). Determination of Optimum Conditions for Ergosterol Production by Saccharomyces cerevisiae. Basrah Journal of Agricultural Sciences, 35(2), 34–48.


  1. Abd-Elsalam, I. S., Adham, N. Z., Shetiaia, Y. M., & Hassan, H. (2017). Fermentation production of ergosterol using Saccharomyces boulardii ATCC 236. The Egyptian Journal of Experimental Biology (Botany), 13(2), 361-366.
  3. Al-Jasass, F. M., Al-Eid, S. M., & Ali, S. H. H. (2010). A comparative study on date syrup (dips) as substrate for the production of baker’s yeast (Saccharomyces cerevisiae). Journal of Food, Agriculture & Environment, 8(2), 314 - 316.
  5. Al-Jumaiee, S. A. J., Al-Hussainy, K. S. J., & Al-Manhel, A. J. A. (2019). Effect of different level of β-glucan extracted from baker's yeast Saccharomyces cerevisiae and barley bran in the physicochemical properties of fish patties at cooling storage periods. Basrah Journal of Agricultural Sciences, 32(1), 79-87.
  7. Al-sahlany, S. T. G., Altemimi, A. B., Al-Manhel, A. J. A., Niamah, A. K., Lakhssassi, N., & Ibrahim, S. A. (2020). Purification of bioactive peptide with antimicrobial properties produced by Saccharomyces cerevisiae. Foods, 9(3), 324.
  9. Amrein, K., Scherkl, M., Hoffmann, M., Neuwersch-Sommeregger, N., Kostenberger, M., Berisha, A. T., Martucci, G., Pilz, S., & Malle, O. (2020). Vitamin D deficiency 2.0: an update on the current status worldwide. European Journal of Clinical Nutrition, 74, 1498-1513.
  11. Anderson, J. G., & Smith, J. E. (1976). Effects of temperature on filamentous fungi. Pp, 191-218. In: Skinners, F.A., & Hugo, W.B. (Eds.).Inhibition and inactivation of vegetative microbes. Academic Press, New York, ‏378pp.
  12. Anonymous. (2010). Vitek2 Systems product Information. Durham, North Carolina 27704-0969, 2-22.
  13. Arthington-Skaggs, B. A. (1999). Quantitation of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans. Journal of Clinical Microbiology, 37(10), 3332-3337.
  15. Blaga, A. C., Ciobanu, C., Cascaval, D., & Galactionb, A. I. (2018). Enhancement of ergosterol production by Saccharomyces cerevisiae in batch and fed-batch fermentation processes using n-dodecane as oxygen-vector. Biochemical Engineering Journal, 131, 70-76.
  17. Bokhari, F. F., & Albaik, M. (2019). Vitamin D and Its Deficiency in Saudi Arabia. IntechOpen
  19. Cirigliano, A., Macone, A., Bianchi, M. M., Oliaro-Bosso, S., Balliano, G., Negri, R., & Rinaldi T. (2019). Ergosterol reduction impairs mitochondrial DNA maintenance in S. cerevisiae. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1864, 290-303.
  21. Damini, D., Jayasmita, D., Sukriti, P., Selvarajan, E., Suganthi, V., & Mohanasrinivasan, V. (2013). Fermentative production of ergosterol using Saccharomyces cerevisiae. Journal of Applied Sciences Research, 9(2), 1214-1221.
  22. Endo, A., Nakamura, T., & Shima, J. (2009). Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiology Letters, 299(1), 95-99.
  24. Gabsi, K., Trigui, M., Barrington, S., Helal, A. N., & Taherian, A. R. (2013). Evaluation of rheological properties of date syrup. Journal of Food Engineering, 117, 165-172.
  26. Grothe, E.; Moo-Young, M., & Chisti, Y. (1999). Fermentation optimization for the production of poly (β-hydroxybutyric acid) microbial thermoplastic. Enzyme and Microbial Technology, 25(1-2), 132-141.
  28. Gutarowska, B., Skóra, J., & Pielech-Przybylska, K. (2015). Evaluation of ergosterol content in the air of various environments. Aerobiologia, 31(1), 33-44.
  30. He, X., Huai, W., Tie, C., Liu, Y., & Zhang, B. (2000). Breeding of high ergosterol-producing yeast strains. Journal of Industrial Microbiology and Biotechnology, 25(1), 39-44.
  32. He, X. P., Zhang, B. R., & Tan, H. R. (2003). Overexpression of a sterol C-24(28) reductase increases ergosterol production in Saccharomyces cerevisiae. Biotechnology Letters, 25, 773-778.
  34. He, X., Guo, X., Liu, N., & Zhang, B. (2007). Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 75, 55-60.
  36. Hirsch, A. L. (2011). Industrial Aspects of Vitamin D.73-93.In: Feldman,D., Pike,W., & Adams, J. S. (Eds.). Vitamin D. 3rd Edition, Academic Press, 2144pp.
  38. Holloway, M. J. (2011). Biochemical and pharmacological characterization of cytochrome b5 reductase as a potential novel therapeutic target in Candida albicans. Ph. D. Thesis, College of Medicine, University of South Florida, 129pp.
  39. Kadakal, C., & Tepe, T. K. (2019). Is Ergosterol a new microbiological quality parameter in foods or not? Food Reviews International, 35(2), 155-156.
  41. Khassaf, W., H., Niamah, A.K., & Al-Manhel, A. J. (2019). Study of the optimal conditions of levan production from a local isolate of Bacillus subtilis subsp. subtilis w36. Basrah Journal of Agricultural Sciences, 32(2), 213-222.
  43. Ledesma-Amaro, R., Jimenez, M. A., & Revuelta, J. L. (2013). Microbial production of vitamins. In: Microbial Production of Food Ingredients, Enzymes and Nutraceuticals.246, Pp, 571-594. In McNeil, B., Archer, D., Giavasis, L., & Harvey, L. (Eds.). Woodhead Publishing Series in Food Science, Technology and Nutrition,Oxford, 610pp.
  44. Li, Y., Wadsö, L., & Larsson, L. (2009). Impact of temperature on growth and metabolic efficiency of Penicillium roqueforti–correlations between produced heat, ergosterol content and biomass. Journal of applied microbiology, 106(5), 1494-1501.
  46. Ma, B. X., Ke, X., Tang, X. L., Zheng, R. C., & Zheng, Y. G. (2018). Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5, 7-dien-3β-ol accumulation by metabolic engineering. World Journal of Microbiology and Biotechnology, 34(4), 1-12.
  48. Martineau, A. R., Thummel, K. E., Wang, Z., Jolliffe, D. A., Boucher, B. J., Griffin, S. J., & Hitman, G. A. (2019). Differential effects of oral boluses of vitamin D2 vs vitamin D3 on vitamin D metabolism: A randomized controlled trial. The Journal of Clinical Endocrinology & Metabolism, 104(12), 5831-5839.
  50. Maurya,V. K., Bashir, K., & Aggarwal, M. (2020). Vitamin D microencapsulation and fortification: Trends and technologies. Journal of Steroid Biochemistry and Molecular Biology, 196, 105489.
  52. Moulas, A., & Vaiou, M. (2018).Vitamin D fortification of foods and prospective health outcomes. Journal of Biotechnology, 285, 91-101.
  54. Nahlik, J., Hrnčiřík, P., Mares, J., Rychtera, M., & Kent, C. A. (2017). Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts. Biotechnology Progress, 33(3), 838-848.
  56. Pludowski, P., Holick, M. F., Grant, W. B., Konstantynowicz, J., Mascarenhas, M. R., Haq, A., Povoroznyuk, V., Balatska, N., Barbosa, A. P., Karonova, T., Rudenka, E., Misiorowski, W., Zakharova, I., Rudenka, A., Lukaszkiewicz, J., Marcinowska- Suchowierska, E., Laszcz, N., Abramowicz, P., Bhattoa, H. P., & Wimalawansa, S. J. (2018). Vitamin D supplementation guidelines. The Journal of Steroid Biochemistry and Molecular Biology, 175, 125-135.
  58. Potumarthi, R., Ch., S., & Jetty, A. (2007). Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: effect of aeration and agitation regimes. Biochemical Engineering Journal, 34(2), 185-192.‏
  60. Rasmey, A. H. M., Hassan, H. H., Abdulwahid, O. A., & Aboseidah, A. A. (2018). Enhancing bioethanol production from sugarcane molasses by Saccharomyces cerevisiae Y17. Egyptian Journal of Botany, 58(3), 547-561.
  62. Rodrigues, M. L. (2018). The multifunctional fungal ergosterol. MBio, 9(5), e01755-18.
  64. Shang, F., Wen, S., Wang, X., & Tan, T. (2006). Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae. Journal of Biotechnology, 122(3), 285-292.
  66. Shobayashi, M., Mitsueda, S. I., Ago, M., & Fujii, T. (2005). Effects of culture condition on ergosterol biosynthesis by Saccharomyces cerevisiae. Bioscience, Biotechnology, and Biochemistry, 69(12), 2381-2388.
  68. Tan, T., Zhang, M., & Gao, H. (2003). Ergosterol production by fed-batch fermentation of Saccharomyces cerevisiae. Enzyme and Microbial Technology, 33(4), 366-370.
  70. van Kuijk, S. J. A., Sonnenberg, A. S. M., Baars, J. J. P., Hendriks, W. H., & Cone, J. W. (2016). The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips. Journal of Animal Science and Biotechnology,7, 32-39.
  71. Veen, M., Stahl, U., & Lang, C. (2003). Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Research, 4(1), 87-95.
  73. Wu, W. J., & Ahn, B. Y. (2014). Statistical optimization of ultraviolet irradiate conditions for vitamin D2 synthesis in oyster mushrooms (Pleurotus ostreatus) using response surface methodology. PLoS One, 9(4), e95359.
  75. Zahedirad, M., Asadzadeh, S., Nikooyeh, B., Neyestani, T. R., Khorshidian, N., Yousefi, M., & Mortazavian, A. M. (2019). Fortification aspects of vitamin D in dairy products: A review study. International Dairy Journal, 94, 53-64.