Main Article Content


The present study was aimed to test optimum conditions for the levan production from local isolation Bacillus subtilis subsp. subtilis w36, which was isolated from Basrah city soil by using production medium containing (40 g of sucrose as carbon source 10g pepton, 1g (NH4) 2SO4, 1g KH2PO4, 1g MgSO4.7H2O). The amount of levan produced was 4.9 Molasses and date juice were used as substitutes for sucrose in growth media and substitute percentages were (25%, 50%, 75% and100%). The results showed the highest production of levan was recorded when sucrose was substituted with 25% molasses, which was 5.2, this medium was used to study optimum conditions included incubation period, inoculation volume, temperature ,initial pH. The highest production of levan was 6.8 g .100 ml-1 within 40 hours' incubation, 1 ml inoculum volume, pH 6.5 and 32 ºC.


Bacillus subtilis Molasses Levan Production Optimal conditions

Article Details

How to Cite
Khassaf, W. H. ., Niamah, A. K. ., & Al-Manhel, A. J. A. . (2019). Study of the Optimal Conditions of Levan Production from a Local Isolate of Bacillus subtilis subsp. subtilis w36. Basrah Journal of Agricultural Sciences, 32(2), 213–222.


  1. Abou-Taleb, K.A.; Abdel-Monem, M.O.; Yassin, M.H. & Draz, A.A. (2014). Nutritional factors affecting levan production by Bacillus sp. V8 strain isolated from rhizosphere bean (Vicea faba) plant. J. Agric. Tech., 10(4): 899- 914.
  2. Abou-Taleb, K.; Abdel-Monem, M.; Yassin, M. & Draz, A. (2015). Production, purification and characterization of Levan polymer from Bacillus lentus V8 strain. Brit. Microbiol. Res. J., 5(1): 22-32.
  3. Al-Manhel, A.J. & Niamah, A.K. (2017). Mannan extract from Saccharomyces cerevisiae used as prebiotic in bioyogurt production from buffalo milk. Int. Food Res. j., 24(5): 2259-2264.
  4. Al-Sahlany, S.T.G. & Al-Asady,A.K. (2015). Study of optimum condition for Polyhydroxybutyrate from local isolate of Bacillus cereus B5 bacteria.U. Thi-Qar J.Sci., 5(2): 88-96.
  5. Belghith, K.S.; Dahech, I.; Belghith, H. & Mejdoub, H. (2012). Microbial production of levansucrase for synthesis of fructooligosaccharides and levan. Int. Biol. Macromol., 50(2): 451-458.
  6. Bersaneti, G.T.; Pan, N.C.; Baldo, C. & Celligoi, M.A. P.C. (2018). Co-production of fructooligosaccharides and levan by levansucrase from bacillus subtilis natto with potential application in the food industry. Appl. Biochem. Biotech., 184(3): 838-851.
  7. Dahech, I.; Bredai, R. & Srih, K. (2014). Optimization of levan production from Bacillus licheniformis using response surface methodology.Biochemistry, 8(4):115-119.
  8. Dalaly, B. & Al-Hakim, S. (1987). Food Analysis. Univ. Mosul, Iraq: 563pp. (In Arabic).
  9. Devi, G.K. & Alamu, A. (2013). Production of biopolymer levan by Bacillus subtilis using non-ionic surfactants. Asian J. Pharm. Tech., 3(4): 149-154.
  10. Divya, J.M. & Sugumaran, K.R. (2015). Fermentation parameters and condition affecting levan production and its applications. J. Chem. Pharm. Res., 7(2): 861-865.
  11. Dos Santos, L.F.; De Melo, F.B.C.; Paiva, W.M.; Borsato D.; Da Silva, M.C.C. & Celligoi, M.P.C. (2013). Characterization and optimization of levan production by Bacillus subtilis NATTO. Rom. Biotech. Lett., 18(4): 08413.
  12. Franken, J.; Brandt, B.A.; Tai, S.L. &Bauer, F.F. (2013). Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae. PloS one, 8(10): e77499.
  13. Gojgic-Cvijovic, G.; Jakovljevic, D.; Loncarevic, B.; Todorovic, N.; Pergal, M.V.; Ciric, J.; Loos, K.; Beskoski, V.P. & Vrvic, M. (2019). Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. Int. J. Biol. Macromol., 121: 142-151.
  14. Gu, Y.; Zheng, J.; Feng, J.; Cao, M.; Gao, W.; Quan, Y.; Dang, Y.; Wang, Y.; Wang, S.&Song, C. (2017). Improvement of levan production in Bacillus amyloliquefaciens through metabolic optimization of regulatory elements. Appl. Microbiol. Biot., 101(10): 4163-4174.
  15. Hamid, K.; Elsayed, E.; El Enshasy, H.; Esawy, M. & Malek, R.A. (2018). Bioprocess optimization for levan production by Bacillus subtilis B58. J. Sci. Ind. Res., 77: 386-393.
  16. Jathore, N.R.; Bule, M.V.; Tilay, A.V. & Annapure, U.S. (2012). Microbial levan from Pseudomonas fluorescens: Characterization and medium optimization for enhanced production. Food Sci. Biotechnol., 21(4): 1045-1053.
  17. Küçüka?ik, F.; Kazak, H.; Güney, D.; Finore, I.; Poli, A.; Yenigün, O.; Nicolaus, B. & Öner, E.T. (2011). Molasses as fermentation substrate for levan production by Halomonas sp. Appl. Microbiol. Biot., 89(6): 1729-1740.
  18. Meng, G. &Fütterer, K. (2003). Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat. Struct. Mol. Biol., 10(11): 935.
  19. Moosavi-Nasab, M.; Layegh, B.; Aminlari, L. &Hashemi, M.B. (2010). Microbial production of levan using date syrup and investigation of its properties. World Acad. Sci., Eng. Tech., 44(2010): 1248-1254.
  20. Santos, V.A.Q.; del Bianchi, V.L.; Garcia- Cruz C.H. (2014). Effect of initial pH in levanproductionby Z. mobilis immobilized in sodium alginate, Acta Sci- Technol., 36(2): 349-354.
  21. Shih, I.L.; Yu; Y.T.; Shieh, C.J. & Hsieh, C.Y. (2005). Selective production and characterization of levan by Bacillus subtilis (Natto) Takahashi. J. Agr. Food Chem., 53(21): 8211-8215.
  22. Silbir, S.; Dagbagli, S.; Yegin, S.; Baysal, T. & Goksungur, Y. (2014). Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohyd. Polym., 99: 454-461.
  23. Srikanth, R.; Reddy, C.H.; Siddartha, G.; Ramaiah, M.J. & Uppuluri, K.B. (2015a). Review on production, characterization and applications of microbial levan. Carbohyd. Polym., 120: 102-114.
  24. Srikanth, R.; Siddartha, G.; Reddy, C.H.S.; Harish, B.; Ramaiah, M.J. & Uppuluri, K.B .(2015b). Antioxidant and anti- inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohyd. Polym., 123: 8-16.
  25. Tomulescu, C.; Stoica, R.; Sevcenco, C.; C???ric?, A.; Moscovici, M. & Vamanu, A. (2016). Levan-a mini review. Sci. Bull. Ser. F. Biotecnol., 20: 309-317.