Main Article Content


The present study was carried out to evaluate the effects of different rates of macronutrients as a foliar spray on the growth performance, yield, and nutrient content of sweet corn grown in the Rengam soil series. The treatments consisted of five rates of macronutrients as a foliar fertilizer at 0, 25, 50, 75, and 100 % NPK. Foliar NPK was applied 25 and 50 days after sowing to the sweet corn seedlings. The results showed that fresh cob weight, cob number, flowering, and dry matter yield of sweet corn significantly increased at the rate of 75%, and 100% of NPK foliar fertilizers. The macro and micronutrient concentrations in ear leaf, mature leaves, stem, cob, and flowers of 75 and 100% NPK treated corn were significantly increased over the control plants. The macronutrient content in the whole plant was also significantly higher at 75% and 100% NPK treatments. Fe and Mn contents in the whole plant were also the highest in 75% and 100% NPK treatments. Macronutrient concentration in ear leaf and whole corn plants significantly correlated with the fresh cob yield of corn. It is concluded that foliar application of N, P, and K macronutrients (75 to 100% NPK) enhanced the yield and quality of sweet corn.


Cereal maize macronutrient spray quality soil series

Article Details

How to Cite
Mohammed, B. A. ., Khandaker, M. M. ., Arshad, A. M. ., Nudin, N. F. H. ., Majrashi, A. ., & Mohd, K. S. . (2023). Effects of Foliar NPK Application on Growth, Yield and Nutrient Content of Sweet Corn Grown on Rengam Series Soil. Basrah Journal of Agricultural Sciences, 36(1), 254–270.


  1. Adhikari, K., Bhandari, S., Aryal, K., Mahato, M., & Shrestha, J. (2021). Effect of different levels of nitrogen on growth and yield of hybrid maize (Zea mays L.) varieties. Journal of Agriculture and Natural Resources, 4(2), 48-62.
  3. Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42.
  5. Ali, A., Hussain, M., Habib, H.S., Kiani, T.T., Anees, M.A., & Rahman, M.A. (2016). Foliar spray surpasses soil application of potassium for maize production under rainfed conditions. Turkish Journal of Field Crop, 21(1), 36–43.
  6. Aziz, M. Z., Yaseen, M., Abbas, T., Naveed, M., Mustafa, A., Hamid, Y., & Xu, M. G. (2019). Foliar application of micronutrients enhances crop stand, yield and the biofortification essential for human health of different wheat cultivars. Journal of Integrative Agriculture, 18(6), 1369-1378.
  8. Balawejder, M., Matłok, N., Gorzelany, J., Pieniazek, M., Antos, P., Witek, G., & Szostek, M. (2019). Foliar fertilizer based on calcined bones, boron and molybdenum-A study on the development and potential effects on maizegrain production. Sustainability, 11, 5287.
  10. Begum, R. A., & Fry, S. C. (2022). Boron bridging of rhamnogalacturonan-II in Rosa and Arabidopsis cell cultures occurs mainly in the endo-membrane system and continues at a reduced rate after secretion. Annals of Botany, 130(5), 703-715.
  12. Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of Phosphorus in soils. Soil Science, 59(1), 39-46.
  14. Bremner, J. M., & Mulvaney, C. S. (1965). Total nitrogen. pp. 1149-1178. In Page, A. L. (Editor). Methods of Soil Analysis: Part 2. Chemical Microbiological Properties, vol. 9, 2nd edition.
  16. Cakmak, I., & Kutman, U. Á. (2018). Agronomic biofortification of cereals with zinc: A review. European Journal of Soil Science, 69(1), 172-180.
  18. Cataldo, E., Salvi, L., Paoli, F., Fucile, M., Masciandaro, G., Manzi, D., Mattii, G. B., & Masini, C. M. (2021). Application of zeolites in agriculture and other potential uses: A review. Agronomy, 11(8), 1547.
  20. Culman, S. W., Snapp, S. S., Ollenburger, M., Basso, B., & DeHaan, L. R. (2013). Soil and water quality rapidly responds to the perennial grain Kernza wheatgrass. Agronomy Journal, 105(3), 735-744.
  22. Davoodi, S. H., Biyabani, A., Rahemi Karizaki, A., Modarres Sanavy, S. A., Gholamalipour Alamdari, E., & Zaree, M. (2020). Effect of iron and zinc nano chelates on yield and yield components of black cumin medicinal plant (Nigella sativa L.). Iranian Journal of Field Crops Research, 18(3), 267-278.
  24. Day, P. R. (1965). Particle fractionation and particle‐size analysis. Pp, 545-567. In Page, A. L. (Editor). Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, Vol. 9, 2nd edition.
  26. Dilipkumar, M., Adzemi, M. A., & Chuah, T. S. (2012). Effects of soil types on phytotoxic activity of pretilachlor in combination with sunflower leaf extracts on barnyardgrass (Echinochloa crus-galli). Weed Science, 60(1), 126-132.
  28. Garland, G., Edlinger, A., Banerjee, S., Degrune, F., García-Palacios, P., Pescador, D. S., & van der Heijden, M. G. (2021). Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nature Food, 2(1), 28-37.
  30. Groth, D. A., Sokólski, M., & Jankowski, K. J. (2020). A multi-criteria evaluation of the effectiveness of nitrogen and sulfur fertilization in different cultivars of winter rapeseed productivity, economic and energy balance. Energies, 13(18), 4654.
  32. Haider, M. U., Hussain, M., Farooq, M., & Nawaz, A. (2020). Zinc nutrition for improving the productivity and grain biofortification of mungbean. Journal of Soil Science and Plant Nutrition, 20, 1321-1335.
  34. Hasan, M. M., Hasan, M. M., Teixeira da Silva, J. A., & Li, X. (2016). Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cellular & Molecular Biology Letters, 21, 1-19.
  36. Hossain, M. D., & Nuruddin, A. A. (2016). Soil and mangrove: a review. Journal of Environmental Science and Technology, 9(2), 198-207.
  38. Jalal, A., Azeem, K., Teixeira Filho, M. C. M., & Khan, A. (2020). Enhancing soil properties and maize yield through organic and inorganic nitrogen and diazotrophic bacteria. Sustainable crop production. London: IntechOpen, 165-178.
  40. Kah, M., Tufenkji, N., & White, J. C. (2019). Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology, 14(6), 532-540.
  42. Khoshgoftarmanesh, A. H., Schulin, R., Chaney, R. L., Daneshbakhsh, B., & Afyuni, M. (2010). Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agronomy for Sustainable Development, 30(1), 83-107.
  44. Kihara, J., Bolo, P., Kinyua, M., Rurinda, J., & Piikki, K. (2020). Micronutrient deficiencies in African soils and the human nutritional nexus: opportunities with staple crops. Environmental Geochemistry and Health, 42, 3015-3033.
  46. Khandaker, M. M., Jamaludin, R., Majrashi, A., Rashid, Z. M., Karim, S. M. R., Al-Yasi, H. M., Badaluddin, N. A., Alenazi, M. M., & Mohd, K. S. (2022) Enhancing Rubisco gene expression and metabolites accumulation for better plant growth in Ficus deltoidea under drought stress using hydrogen peroxide. Frontier in Plant Science, 13, 965765.
  48. Kolisnyk, O. M., Onopriienko, V. P., Onopriienko, I. M., Kandyba, N. M., Khomenko, L. M., Kyrychenko, T. O., & Terokhina, N. O. (2020). Study of correlations between yield inheritance and resistance of corn self-pollinating lines and hybrids to pathogens. Ukrainian Journal of Ecology, 10(1), 220-225.
  50. Kolota, E., & Osinska, M. (2001). Efficiency of foliar nutrition of field vegetables grown at different nitrogen rates. In: Proc. IC Environ. Problems of nitrogen fertilizer. Acta Horticulturae, 563, 87-91.
  52. Krishnasree, R. K., Sheeja, K. R., & Chacko, S. R. (2021). Foliar nutrition in vegetables: A review. Journal of Pharmacognosy and Phytochemistry 10(1), 2393-2398.
  54. Kusin, F. M., Azani, N. N. M., Hasan, S. N. M. S., & Sulong, N. A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena, 165, 454-464.
  56. Liang, W., Zhang, Z., Wen, X., Liao, Y., & Liu, Y. (2017). Effect of non-structural carbohydrate accumulation in the stem pre-anthesis on grain filling of wheat inferior grain. Field Crops Research, 211, 66-76.
  58. Ma, Z., Hu, X., & Boye, J. I. (2020). Research advances on the formation mechanism of resistant starch type III: A review. Critical Reviews in Food Science and Nutrition, 60(2), 276-297.
  60. Mahmoodi, B., Moballeghi, M., Eftekhari, A., & Neshaie-Mogadam, M. (2020). Effects of foliar application of liquid fertilizer on agronomical and physiological traits of rice (Oryza sativa L.). Acta Agrobotanica, Article ID: 7332.
  62. Majeed, A., Minhas, W. A., Mehboob, N., Farooq, S., Hussain, M., Alam, S., & Rizwan, M. S. (2020). Iron application improves yield, economic returns and grain-Fe concentration of mungbean. PLOS One, 15(3), e0230720.
  64. Makino, A. (2003). Rubisco and nitrogen relationships in rice: leaf photosynthesis and plant growth. Soil Science and Plant Nutrition, 49(3), 319-327.
  66. Marto, J., Pinto, P., Fitas, M., Gonçalves, L. M., Almeida, A. J., & Ribeiro, H. M. (2018). Safety assessment of starch-based personal care products: Nanocapsules and pickering emulsions. Toxicology and Applied Pharmacology, 342, 14-21.
  68. Nadeem, F., & Farooq, M. (2019). Application of micronutrients in rice-wheat cropping system of South Asia. Rice Science, 26(6), 356-371.
  70. Nicoulaud, B. A. L., & Bloom, A. J. (1996). Absorption and assimilation of foliar applied urea in tomato. Journal of the American Society for Horticultural Science, 121(6), 1117-1121.
  72. Nord, N., Shakerin, M., Tereshchenko, T., Verda, V., & Borchiellini, R. (2021). Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects. Energy, 222, 119965.
  74. Oosterhuis, D. M., Loka, D.A., & Raper, T.B. (2013). Potassium and stress alleviation: Physiological functions and management of cotton. Journal of Plant Nutrition and Soil Science, 176(3), 331-343.
  76. Piper, C. S. (1950). Soil and plant analysis. Interscience Pub. Inc., New York, 212pp.
  78. Pradeep, M., & Elamathi, S. (2007). Effect of foliar application of DAP, micronutrients and NAA on growth and yield of green gram (Vigna radiata L.). Legume Research, 30(4), 305-307.
  80. Raji, M., & Thangavelu, M. (2021). Isolation and screening of potassium solubilizing bacteria from saxicolous habitat and their impact on tomato growth in different soil types. Archives of Microbiology, 203(6), 3147-3161.
  82. Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9(4), 192.
  84. Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, 114(36), 9575-9580.
  86. Sanyal, S. K., Rajasheker, G., Kishor, P. K., Kumar, S. A., Kumari, P. H., Saritha, K. V., & Pandey, G. K. (2020). Role of protein phosphatases in signaling, potassium transport, and abiotic stress responses. Pp, 203-232. In Pandey, G.K. (Ed.). Protein Phosphatases and Stress Management in Plants. Springer, Cham. 387pp.
  88. Sardans, J., & Peñuelas, J. (2021). Potassium control of plant functions: Ecological and agricultural implications. Plants, 10(2), 419.
  90. Senanayake, R. L., Oberson, A., Weerakoon, W., Egodawatta, C. P., Nissanka, S., & Frossard, E. (2023). Influence of nitrogen and potassium inputs on plant biomass and nitrogen use efficiency of Dioscorea alata. Journal of Plant Nutrition, 46(3), 321-343.
  92. Shafiee, M. I., Baki, B., Khandaker, M. M., Mispa, M.S., Bakar, B. H., Boyce, A. N., Saad, J. M., & Aziz, T. A. (2012). SBAJA a novel foliar applied growth and yield enhancer of rice in Malaysia. Bioscience Journal, 34(4), 858-867.
  94. Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36-58.
  96. Shahrajabian, M. H., Sun, W., & Cheng, Q. (2022). Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 1-10.
  98. Singh, J., Singh, M., Jain, A., Bhardwaj, S., Singh, A., Singh, D. K., Nehru, B. B., & Dubey, S. K. (2014). An introduction of plant nutrients and foliar fertilization: A review. Pp, 258-320. In Ram, T., Lohan, S. K., Singh, R., & Singh R. (Eds.). Precision Farming a New Approach. Daya Publishing Company. New Delhi. 452pp.
  100. Suganya, A., Saravanan, A., & Manivannan, N. (2020). Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Communications in Soil Science and Plant Analysis, 51(15), 2001-2021.
  102. Taheri, R. H., Miah, M. S., Rabbani, M. G., & Rahim, M. A. (2020). Effect of different application methods of zinc and boron on growth and yield of cabbage. European Journal of Agriculture and Food Sciences, 2(4), 1-4.
  104. Tondey, M., Kalia, A., Singh, A., Dheri, G. S., Taggar, M. S., Nepovimova, E., & Kuca, K. (2021). Seed priming and coating by nano-scale zinc oxide particles improved vegetative growth, yield and quality of fodder maize (Zea mays). Agronomy, 11(4), 729.
  106. Vincente, A. R., Manganaris, G. A., Ortiz, C. M., Sozzi, G. O., & Crisosto, C. H. (2014). Chapter 5. Nutritional quality of fruits and vegetables. pp. 69-122. In Florkowski, W., Banks, N., Shewfelt, R., & Prussia, S. (Editors). Postharvest handling, A Systems Approach. 3rd edition. 592pp. Academic Press.
  108. Wasaya, A., Shahzad Shabir, M., Hussain, M., Ansar, M., Aziz, A., Hassan, W., & Ahmad, I. (2017). Foliar application of zinc and boron improved the productivity and net returns of maize grown under rainfed conditions of Pothwar plateau. Journal of Soil Science and Plant Nutrition, 17(1), 33-45.
  110. Yaseen, M., Abbas, T., Aziz, M.Z., Wakeel, A., Yasmeen, H., Ahmed, W., & Naveed, M., (2018). Microbial assisted foliar feeding of micronutrients enhance growth, yield and biofortification of wheat. International Journal of Agriculture and Biology, 20, 353-360.
  112. Zain, M., Khan, I., Khan Qadri, R., Ashraf, U., Hussain, S., Minhas, S., Siddiquei, A., Jahangir, M., & Bashir, M. (2015). Foliar application of micronutrients enhances wheat growth, yield and related attributes. American Journal of Plant Sciences, 6(7), 864-869.

Similar Articles

You may also start an advanced similarity search for this article.