Main Article Content


Scaptomyza flava (Diptera: Drosophilidae) is a serious pest that attacks Brassicaceae, causing significant production losses. The current study was carried out to evaluate the relative efficiency of deltamethrin 2.5 EC, abamectin 1.8 EC, and acetamiprid 20 SP insecticides. In addition to determining the acetamiprid 20 SP and abamectin1.8 EC residues in the leaves and roots of radish. The mortality score revealed that acetamiprid 20 SP, and abamectin 1.8 EC achieved 87.3% and 72.8% respectively after 72 hours compared to deltamethrin 2.5 EC, which scored 54.42%. The chromatogram outcomes of acetamiprid 20 SP and Abamectin1.8EC demonstrated that the acetamiprid 20 SP residues sharply decreased. They reduced from 1856.8 and 25.9 to 0 mg.L-1 in both leaves and roots respectively after ten days of application. While the Abamectin1.8 EC residue was decreasing from 954.12 to 0 mg.L-1 after ten days. Furthermore, abamectin 1.8 EC residues have not been detected in the radish roots. The overall consequence proposed that both acetamiprid 20 SP and abamectin1.8 EC are highly efficient in the controlling of Scaptomyza flava larva and there are no harmful impacts for both on the edible vegetable.


Abamectin 1.8 EC Acetamiprid 2.5 SP HPLC Radish Scaptomyza flava

Article Details

How to Cite
Fadhil, A. A. ., & Thamer, N. K. . (2023). Chemical Control of the Leaf Miner Scaptomyza flava Fallen (Diptera: Drosophilidae) and Determination of Acetamipride and Abamectin Residues on Radish Plant. Basrah Journal of Agricultural Sciences, 36(2), 226–234.


  1. Algethami, J. S., Alhamami, M. A. M., Ramadan, M. F., & Abdallah, O. I. (2023). Residues of the Acaricides Abamectin, Hexythiazox, and Spiromesifen in eggplant (Solanum melongena L.) fruits grown under field conditions in Najran, Saudi Arabia. Agriculture 13, 116.
  3. Ali, H. M., Gamal, M., Ghoneim, M. M., & Mohammed Abd Elhalim, L. (2022). Quantitative Analysis of abamectin, albendazole, levamisole HCl and closantel in q-drench oral suspension using a stability-indicating HPLC-DAD method. Molecules, 27(3).
  5. ‏Al-Farttoosy, A. H., & Al Sadoon, J. N. (2022) Comparison of different coefficients to know the kinetic behaviour of glyphosate in soil column’, Basrah Journal of Agricultural Sciences, 35(2), pp. 110-118.
  7. Al-Masoudi, R. K. H. (2019). Morphological, anatomical and geographical distribution studies of species Horwoodia dicksoniae (Turrill) in Iraq. Iraqi Journal of Agricultural Sciences, 50(6), 1613-1620.‏
  9. Badawy, M. E. I., Ismail, A. M. E., & Ibrahim, A. I. H. (2019). Quantitative analysis of acetamiprid and imidacloprid residues in tomato fruits under greenhouse conditions. Journal of Environmental Science and Health, Part B, 54(11), 898–905.
  11. Cordova, D.; Benner, E. A.; Sacher, M. D.; Rauh, J. J.; Sopa, J. S.; Lahm, G. P.; Selby, T. P.; Stevenson, T. M.; Flexner, L.; Gutteridge, S., & Tao, Y. (2006). Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pesticide Biochemistry and Physiology, 84(3), 196-214.
  13. European Food Safety Authority (EFSA). (2010). 2008 Annual report on pesticide residues according to article 32 of regulation (EC) No 396/2005. EFSA Journal, 8(7), 1646-1807.
  15. Hameed, S. N., & Al-Farttoosy, A. H. (2022) Biodegradation of Carbendazim using four bacterial Strains. Misan Journal for Academic Studies, 21(44), 346-358.
  17. Harris, B. M., & Maclean, B. (1999). Spinosad: control of lepidopterous pests in vegetable brassicas. In Proceedings of the New Zealand Plant Protection Conference, 52, 65-69.‏
  19. Henderson, C. F., & Tilton, E. W. (1955). Tests with acaricides against the brow wheat mite. Journal of Economic Entomology 48, 157-161.
  21. Lacey, L. A. (Ed.). (1997). Manual of techniques in insect pathology. Academic Press‏, 404pp.
  23. Mahdi, H. A., Najim, S. A., & Fadhil, A. A. (2020). Identification of European leafminer Insect Scaptomyza flava FALLEN (Diptera: Drosophilidae) from Brassicaceae plants in Basrah Province Fields Southern Iraq. Zagazig Journal of Agricultural Research, 47(5), 1183-1188.
  25. Malhat, F., Almaz, M., Arief, M., El-Din, K., & Fathy, M. (2012). Residue and dissipation dynamics of lufenuron in tomato fruit using QuEChERS methodology. Bulletin of Environmental Contamination and Toxicology, 89(5), 1037–1039.
  27. Martin, N.A. (2004). History of an invader, Scaptomyza flava (Fallen, 1823) (Diptera: Drosophiidae). New Zealand Journal of Zoology, 31, 27-32.
  29. Mehdi, H. A., Najim, S. A., & Aufi, B. G. (2019). Chemical and biological control of radish leave miner insect Scaptomyza flava Fallen (Diptera: Drosophilidae) under the Conditions of Basrah Province. Syrian Journal of Agricultural Research–SJAR, 6(4), 549-556.
  31. Parrella, M. P., & Keil, C. B. (1984). Insect pest management: the lesson of Liriomyza. Bulletin of the ESA, 30(2), 22-25.‏
  33. Prijono, D., Robinson, M., Rauf, A., Bjorksten, T., & Hoffmann, A. A. (2004). Toxicity of chemicals commonly used in Indonesian vegetable crops to Liriomyza huidobrensis populations and the Indonesian parasitoids Hemiptarsenus varicornis, Opius sp., and Gronotoma micromorpha, as well as the Australian parasitoids Hemiptarsenus varicornis and Diglyphus isaea. Journal of Economic Entomology, 97(4), 1191-1197.‏
  35. Seraj, A.A. (1994). Biology and host plant relationships of Scaptomyza flava leaf miner. Ph. D. Thesis, Massey University, New Zealand.
  37. Tollerup, K., & Higbee, B. (2020). Evaluation of a preventative strategy to manage spider mites on almond. Insects, 11(11), 772.
  39. Trumble J. T. (1985). Integrated pest management of Liriomyza trifolii: influence of avermectin, cyromazine and methomyl on leafminer ecology in celery. Agriculture, Ecosystems and Environment 12(3), 181-188.
  41. Wu, J., Wang, K., & Zhang, H. (2012). Dissipation and residue of acetamiprid 20 ECin watermelon and soil in the open field. Bulletin Environmental Contamental contmintion and Toxicology, 89(3), 644-8.