Main Article Content

Abstract

The present study aims to investigate the biosynthesis of silver nanoparticles using the aqueous extract of the Eragrostis tef (teff or annual bunch grass) and Vitellaria paradoxa (Shea Butter Tree) seeds extract and investigate their antimicrobial and anticancer activities. In order to synthesise the silver nanoparticles, aqueous extract of the plant was prepared and introduced into a 1mM silver nitrate solution. The synthesised AgNPs were characterised using various instrumental techniques including ultraviolet-visible spectroscopy, Fourier transformed infrared spectroscopy (FTIR), scanning electron microscope (SEM). Surface Plasmon Resonance (SPR) for AgNPs using E. tef and V. paradoxa seeds extract was observed at 40 nm. The synthesised AgNPs of E. tef and V. paradoxa was found with diameter of 12.59- 34.60 nm, 29.05- 83.94 nm respectively. The antibacterial result against the experimental pathogens was found to range from 12-22 mm and from 13-19 mm using AgNPs of E. tef, V. paradoxa seed extracts respectively. In addition the result show that there was clear effect on Acinetobacter baumannii from hospital sewage isolates. Toxic effect of AgNPs against cancer cell were 77.12 (concentration of AgNPs was 75%) of E. tef and 77.23 (concentration of AgNPs was 50%) of V. paradoxa.

Keywords

Anticancer Green synthesis Pathogenic bacteria Silver nitrate

Article Details

How to Cite
Almudhafar, S. M. A. ., & Al-Hamdani, M. A. . (2022). Antibacterial and Anticancer Effects of Silver Nanoparticles Synthesised using Eragrostis tef and Vitellaria paradoxa Seeds Extract. Basrah Journal of Agricultural Sciences, 35(2), 132–159. https://doi.org/10.37077/25200860.2022.35.2.10

References

  1. Adekunle, A. S., & Adekunle, O. C. (2009). Preliminary assessment of antimicrobial properties of aqueous extract of plants against infectious diseases. Biology and Medicine 1(3), 20-24.
  2. https://www.cabdirect.org/cabdirect/abstract/20103234843
  3. Ahmed, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, MI., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces, 28, 313-318.
  4. https://doi.org/10.1016/S0927-7765 (02)00174-1
  5. Ahmed, Sh., Ahmad, M., Swami B. L., & Ikram S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17-28.
  6. https://doi.org/10.1016/j.jare.2015.02.007
  7. Al-Ali, A. A., & Jawad, R. K. (2021). Cerium oxide nanoparticles Ceo2np and retinoic acid trigger cytotoxicity and apoptosis pathway in human breast Cell Lines. Annals of the Romanian Society for Cell Biology, 25(4), 8448-8477.
  8. Al-Hamdani M. A., & Abas I. J. (2013). Study of plasmid profile and susceptibility patterns of Escherichia coli isolated from patients with urinary tract infection in Basra. Journal of Thi-Qar Sciences, 4(1), 31-39.
  9. Al-Hamdani M, Akbar M. M, Saed S. M. (2020). Seasonal Variation, Antibiotic Resistance of Some Sewage Bacteria from Hamdan Waste Water Treatment Plant in Basrah City-Iraq. Journal of Global Pharma Technology, 12(2), 147-153.
  10. Al-Marjani, F. M., Makarim, A. K., Jabari, Z. H., & Zaid, N. H. (2010). Detection of multidrug resistant Pseudomonas aeroginosa isolates producing IMP-1 Metallo-β-Lactamase in some Baghdad hospitals. Tikrit Journal of Pure Science, 15(1), 188-192.
  11. Al-Musawi Z. & Al-Saadi N. (2021). Antitumor activities of biosynthesized silver nanoparticles using Dodonaea viscosa (L.) leaves extract. Basrah Journal of Agricultural Sciences, 34(2), 42-59.
  12. https://doi.org/10.37077/25200860.2021.34.2.04
  13. Al-Rubaye, A. F., Hameed, I. H., & Kadhim, M. J. (2017). A review: Uses of gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive natural compounds of some plants. International Journal of Toxicological and Pharmacological Research, 9(1), 81-85.
  14. https://doi.org/10.25258/ijtpr.v9i01.9042
  15. Al-Shammari, A. M., Alshami, M. A., Umran, M. A., Almukhtar, A. A.; Yaseen, N. Y., Raad, K., & Hussien, A. A. (2015). Establishment and characterisation of a receptor-negative, hormone-nonresponsive breast cancer cell line from an Iraqi patient. Breast Cancer: Targets Ther, 7, 223-230.
  16. https://doi.org/10.2147/BCTT.S74509
  17. Al-Shammari, A. M., Al-Esmaeel, W. N., Al-Ali, A. A., Hassan, A. N. A., & Ahmed, A. A. (2019). Enhancement of oncolytic activity of Newcastle disease virus through combination with retinoic acid against digestive system malignancies. Molecular Therapy, 27(4S1), 126-127.
  18. Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterisation of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6, 399-408.
  19. https://link.springer.com/article/10.1007/s13204-015-0449-z
  20. Animasaun, D. A, Oyedeji, S, Olorunmaiye, K. S, Azeez, M. A., Tijani, I. A., & Morakinyo, J. A. (2019). Morpho-chemical divergence and fatty acid profile of shea tree seeds (Vitellaria paradoxa) collected from different locations in Kwara State, Nigeria. Acta Botanica Croatica, 78(1), 17-24.
  21. https://doi.org/10.2478/botcro-2019-0002
  22. Anoar, A. K., Ali, F. A., & Sherko, A. O. (2014). Detection of metallo β-lactamase enzyme in some gram negative bacteria isolated from burn patients in Sulaimani city, Iraq. European Scientific Journal, 10(3), 1875-1887.
  23. Balaj, K., Kilimozhi, D., & Parthasarathy, V. (2014). GC-MS analysis of various extracts of Clerodendrum phlomidis leaf. International Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 226-232.
  24. Bharathy, V., Maria Sumathy, B., & Uthayakumari, F. (2012). Determination of phytocomponents by GC-MS in leaves of Jatropha gossypifolia. Science Research Reporter. 2(3), 286-290.
  25. Bodoprost, H., & Rosemeyer, J. (2007). Analysis of phenacylester derivatives of fatty acids from, Human skin surface Sebum by RP-HPLC: Chromatograpic mobility as a function of physiochemical properties. International Journal of molecular Sciences, 8(11), 1111-1124.
  26. https://doi.org/10.3390/i8111111
  27. Boka, B., Woldegiorgis, A. Z, & Haki, G. D. (2013). Antioxidant properties of Ethiopian traditional bread (injera) as affected by processing techniques and tef grain (Eragrostis tef (Zucc.)) varities. Canadian Chemical Transactions, 1(2), 7-24.
  28. http://doi.org/10.13179/canchemtrans.2013.01.01.0012
  29. Dadashpour, M., Firouzi-Amandi, A., Pourhassan-Moghaddam, M., Maleki, M. J., Soozangar, N., Jeddi, F., Nouri, M., Zarghami, N., & Pilehvar-Soltanahmadi, Y. (2018). Biomimetic synthesis of silver nanoparticles using Matricaria chamomilla extract and their potential anticancer activity against human lung cancer cells. Materials Science and Engineering: C, 92, 902-912.
  30. https://doi.org/10.1016/j.msec.2018.07.053
  31. Dhand, V., Soumya, L., Bharadwaj, S., Chakra, Sh., Bhatt, D., & Sreedhar, B. (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering: C, 58, 36-43.
  32. https://doi.org/10.1016/j.msec.2015.08.018
  33. Datta, P., Gupta, V., Garg, S., & Chander, J. (2012). Phenotypic method for differentiation of carbapenemase in Enterobacteriaceae: study from north India. Indian Journal Pathology Microbiology, 55(3), 357-360.
  34. https://doi.org/10.4103/0377-4929.101744
  35. Esterly, J. S., Wagner, J., McLaughlin, M. M., Postelnick, M. J., Qi, C., & Scheetz, M. H. (2012). Evaluation of clinical outcomes in patients with bloodstream infections due to gram-negative bacteria according to carbapenem MIC stratification. Antimicrobial Agents Chemotherapy 56, 4885-4890.
  36. http://doi.org/10.1128/AAC.06365-11
  37. Feliciano, A., Medarde, M., Del Rey, B., Del Corral, J., & Barrero, A. (1990). Eudesmane glycosides from Carthamus lanatus. Phytochemistry, 29, 3207-3211.
  38. https://doi.org/10.1016/0031-9422 (90)80186-K
  39. Freshney, R. I. (2010). Culture of animal cells a manual of basic technique and specialized applications. Sixth edition, Wiley-Blackwell, 732pp.
  40. https://doi.org/10.1002/9780470649367
  41. Gardea-Torresdey J. L., Gomez, E., Videa, J. R. P., Troiani, H., & Yacaman, M. J. (2003). Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir, 19, 1357-1361.
  42. https://doi.org/10.1021/la020835i
  43. Grover, N., & Patni, V. (2013). Phytochemical characterization using various solvent extracts and GC-MS analysis of methanolic extract of woodfordia fruticosa leaves. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 291-295.
  44. Guh, A. Y., Limbago, B. M., & Kallen, A. J. (2014). Epidemiology and prevention of carbapenem-resistant Enterobacteriaceae in the United States. Expert Review of Anti-infective Therapy, 12(5), 565-580.
  45. http://doi.org/10.1586/14787210.2014.902306
  46. Gupta, E., Mohanty, S., Sood, S., Dhawan, B., & Das, B. K. (2006). Emerging resistance to carbapenems in a tertiary care hospitalin north India. The Indian Journal of Medical Research, 124(1): 95-98.
  47. Gupta, N., Limbago, B. M., Patel, J. B., & Kallen, A. J. (2011). Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clinical Infectious Diseases 53, 60-67.
  48. http://doi.org/10.1093/cid/cir202.
  49. Jha, K. A. & Prasad, K. (2010). Green synthesis of silver nanoparticles using Cycas leaf. International Journal of Green Nanotechnology: Physics and Chemistry, 1(2), 110-117.
  50. https://doi.org/10.1080/19430871003684572
  51. Kala, S. M. J., Balasubramanian, T., Tresina Soris, S., & Mohan, V. R. (2011). GC-MS determination of bioactive components of Eugenia singampattiana Bedd. International Journal of ChemTech Research, 3, 1534-1537.
  52. Kasthuri, J., Veerapandian, S., & Rajendiran, N. (2009). Biological synthesis of silver and gold nanoparticles using apiin as reducing agents. Colloids and Surfaces B: Biointerfaces, 68, 55-60.
  53. https://doi.org/10.1016/j.colsurfb.2008.09.021
  54. Kaviya, S. S. J., & Viswanathan, B. (2011). Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol. Journal of Nanotechnology, 2011, Article ID 152970, 1-5.
  55. https://doi.org/10.1155/2011/152970
  56. Keshari, A. K., Srivastava, R., Singh, P., Yadav, V. B., & Nath, G. (2018). Antioxidant and antibacterial activity of silver nanoparticles synthesised by Cestrum nocturnum. Journal of Ayurveda and Integrative Medicine, 11, 37-43.
  57. https://doi.org/10.1016/j.jaim.2017.11.003
  58. Khalil, K. A., Fouad, H., Elsarnagawy, T., & Almajhdi, F. N. (2013). Preparation and characterisation of electrospun PLGA/silver composite nanofibers for biomedical applications. International Journal of Electrochemical Science, 8, 3483-3493.
  59. Khalil, M. M. H, Ismail, E. H., El-Baghdady, K. Z., & Mohamed, D. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7(6), 1131-1139.
  60. https://doi.org/10.1016/j.arabjc.2013.04.007
  61. Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C. (2001). Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science. Trends in Biotechnology, 19, 15-20.
  62. https://pubmed.ncbi.nlm.nih.gov/23318667/
  63. Korbekandi, H. & Iravani, S. (2012). Chapter: 1, Silver nanoparticles, the delivery of nanoparticles. 1-36. In Hashim, A. A. (Ed.). Advances in Nanocomposite Technology. IntechOpen. 388pp.
  64. https://doi.org/10.5772/34157
  65. Kumar, P. P., Kumaravel, S., & Lalitha, C. (2010). Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. African Journal Biochemistry Research, 4(7), 191-195.
  66. https://doi.org/10.5897/AJBR.9000213
  67. Kumar, P.P., Pammi, S.V., Kollu, P., Satyanayarana, K., & Shameem, U. (2014). Green synthesis and characterisation of silver nanoparticles using Boerhaavia diffusa plant extract and their anti-bacterial activity. Industrial Crops and Products, 52, 562-566.
  68. https://doi.org/10.1016/j.indcrop.2013.10.050
  69. Lewis, K., & Ausubel, F. M. (2006). Prospects for plant-derived antibacterials. Nature Biotechnology, 24(12), 1504-1507.
  70. https://doi.org/10.1038/nbt1206-1504
  71. Logeswari, P., Silambarasan, S., & Abraham, J. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 19(3), 311-317.
  72. https://doi.org/10.1016/j.jscs.2012.04.007
  73. Lu, Z., Rong, K., Li, J., Yang, H., & Chen, R. (2013). Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. Journal of Materials Science Material Medicine, 24(6), 1465-1471.
  74. https://doi.org/10.1007/s10856-013-4894-5
  75. Manoharan, A., Premalatha, K., Chatterjee, S., & Mathai, D. (2011). Correlation of TEM, SHV, and CTx-M extended-spectrum beta lactamase among Enterobacteriaceae within their in vitroantimicrobial susceptibility. Indian. Journal of Medical Microbiology, 29(2), 161-164.
  76. https://doi.org/10.4103/0255-0857.81799
  77. Mittal, A.K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346-356.
  78. https://doi.org/10.1016/j.biotechadv.2013.01.003
  79. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B, Ramirez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353
  80. https://doi.org/10.1088/0957-4484/16/10/059
  81. Mubarak Ali, D., Thajuddin, N., Jeganathan, K., & Gunasekaran, M. (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B: Biointerfaces, 85(2), 360-365.
  82. https://doi.org/10.1016/j.colsurfb.2011.03.009
  83. Nestor, A. R. V., Mendieta, V. S., Lopez, M. A. C., Espinosa, R. M. G., Lopez, M. A. C., & Alatorre, J. A. A. (2008). Solventless synthesis and optical properties of Au and Ag nanoparticles using Camiellia sinensis extract. Materials Letters, 62(17-18), 3103-3105.
  84. https://doi.org/10.1016/j.matlet.2008.01.138
  85. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712-1720.
  86. http://doi.org/10.1128/AEM.02218-06
  87. Philip, D. (2010). Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: Low-dimensional Systems and Nanostructures, 42(5), 1417-1424.
  88. https://doi.org/10.1016/j.physe.2009.11.081
  89. Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2(1), 1-42.
  90. https://doi.org/10.1186/2228-5326-2-32
  91. Sangour, M. H., Ali, I. M., Atwan, Z. W., & Al-Ali A. A. (2021). Effect of Ag nanoparticles on viability of MCF-7 and Vero cell lines and gene expression of apoptotic genes. Egyptian Journal of Medical Human Genetics, 22(9).
  92. https://doi.org/10.1186/s43042-020-00120-1
  93. Sankar, R., Karthik, A., Prabu, A., Karthik, S., Shivashangari, K. S., & Ravikumar, V. (2013). Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids and surfaces. B, Biointerfaces, 108, 80-84.
  94. https://doi.org/10.1016/j.colsurfb.2013.02.033
  95. Santhosh, K. S., Samydurai, P., Ramakrishnan, R., & Nagarajan, N. (2014). Gas chromatography and mass spectrometry analysis of bioactive constituents of Adiantum capillus-veneris L. International Journal of Pharmaceutical Sciences, 6(4), 60-63.
  96. Santos, E. D. B., Madalossi, N. V., Sigoli, F. A., & Mazali, I. O. (2015). Silver nanoparticles: green synthesis, self-assembled nanostructures and their application as SERS substrates. New Journal of Chemistry, 39, 2839-2846.
  97. https://doi.org/10.1039/C4NJ02239D
  98. Sarac, N., & Ugur, A. (2009). The in vitro antimicrobial activities of the essential oils of some Lamiaceae species from Turkey. Journal of Medicinal Food, 12, 902-907.
  99. https://doi.org/10.1089/jmf.2008.0089
  100. Satyavani, K., Ramanathan, T., & Gurudeeban, S. (2011). Green synthesis of silver nanoparticles by using stem derived callus extract of bitter apple (Citrullus colocynthis). Digest Journal of Nanomaterials and Biostructures, 6(3), 1019-1024.
  101. https://doi.org/10.3923/ajbkr.2011.246.253
  102. Saxena, A., Tripathi, R. M., & Singh, R. P. P. (2010). Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Digest Journal of Nanomaterials and Biostructures, 5, 2, 427-432.
  103. Shankar, S., Ahmed, A., & Sastry, M. (2003). Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Program, 19, 1627-1631.
  104. https://doi.org/10.1021/bp034070w
  105. Shankar, S., Rai, A., Ahmed, A., & Sastry, M. (2005). Controlling the optical properties of lemongrass extract synthesised gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry Materials, 17, 566-572.
  106. https://doi.org/10.1021/cm048292g
  107. Singh, A., Jain, D., Upadhyay, M. K., Khandelwal, N., & Verma, H. N. (2010). Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Digest Journal of Nanomaterials and Biostructures. 5(2), 483-489.
  108. Slayton, R. B., Toth, D., Lee, B.Y., Tanner, W., Bartsch, S. M., Khader, K., Wong, K., McKinnell, J. A., Ray, W., Miller, L. G., Rubin, M., Kim, D. S., Adler, F., Cao, C., Avery, L., Stone, N. T. B., Kallen, A., Samore, M., Huang, S. S., Fridkin, S., & Jernigan, J. A. (2015). Vital signs: estimated effects of a coordinated approach for action to reduce antibiotic-resistant infections in health care facilities-United States. (MMWR) Morbidity and Mortality Weekly Report, 64, 826-831.
  109. http://doi.org/10.15585/mmwr.mm6430a4
  110. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agents: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloids and Interface Science, 275, 177-182.
  111. https://doi.org/10.1016/j.jcis.2004.02.012
  112. Song, J. Y., Kwon, E. -Y., & Kim, B. S. (2009). Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess and Biosystems Engineering, 32, 79-84.
  113. https://doi.org/10.1007/s00449-009-0373-2
  114. Sulaiman, G., Mohammed, W., Marzoog, T, Al-Amiery, A., Kadhum, A., & Mohamad, A. (2013). Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pacific Journal of Tropical Biomedicine, 3(1), 58-63.
  115. https://doi.org/10.1016/S2221-1691 (13)60024-6
  116. Swamy, M. K., Akhtar, M. S., Mohanty, S. K., & Sinniah, U. R. (2015). Synthesis and characterisation of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 151, 939-941.
  117. https://doi.org/10.1016/j.saa.2015.07.009
  118. Thirunavoukkarasu, M., Balaji, U., Behera, S., Panda, P. K., & Mishra, B. K. (2013). Biosynthesis of silver nanoparticles from leaf extract of Desmodium gangeticum (L.) DC. and its biomedical potential. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 424-427.
  119. https://doi.org/10.1016/j.saa.2013.07.033
  120. Umoren, S. A., Obot, I. B., & Gasem, Z. M. (2014). Green synthesis and characterisation of silver nanoparticles using red apple (Malus domestica) fruit extract at room temperature. Journal of Materials and Environmental Science, 5, 3, 907-914.
  121. Vasoo, Sh., Barreto, J. N., & Tosh, P. K. (2015). Emerging issues in gram-negative bacterial resistance: an update for the practicing clinician. Mayo Clinic Proceedings, 90, 395-403.
  122. http://doi.org/10.1016/j.mayocp.2014.12.002
  123. Wiley, B., Im, S., Li, Z., McLellan, J., Siekkinen, A., & Xia, Y.(2006). Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. Journal of Physical Chemistry B, 110, 32, 15666-15675.
  124. https://doi.org/10.1021/jp0608628
  125. Zare, H. (2020). Biosynthesis of silver nanoparticles using common sage extract and evaluation of the anticancer activity. Biomedical Journal of Scientific & Technical Research, 28, 1, 21179-21185.
  126. https://doi.org/10.26717/BJSTR.2020.28.004581
  127. Zhang, T., Wang, L., Chen, Q., & Chen, Ch. (2014). Cytotoxic potential of silver nanoparticles. Yonsei Medical Journal, 55, 2, 283-291.
  128. https://doi.org/10.3349/ymj.2014.55.2.283