Main Article Content


Drought is one of the most critical abiotic factors especially in warm dry areas yielding limited crop. Ten wheat genotypes tested for drought tolerance at germination stage. Polyethylene Glycol-8000 used to induce -1.7 and -3.5 bars osmotic potential as compared to control treatment with three replications in factorial experiment with completely Randomized Design(CRD).The studied parameters showed a decreasing in style of response to increment of PEG concentration.The lowest  Final  Germination  Percentage  (FGP)  mean  recorded was 73.23 % under -3.5 bars as compared to control. Means of Daily Germination time (MDG), Germination Index (GI) and Coefficient of Velocity Germination (CVG) have been decreased from 4.04, 3.23 and 81.64 at control treatment to 2.46, 1.77 and 69.21 at severe drought level. But the highest CVG; 83.34 recorded by Azady under 160 g/ L PEG. In addition under -3.5 bar treatment lowest means of shoot and root length recorded; 3.34 and 1.92 cm as compared to control treatment. While, lowest shoot weight and whole seedling weight; 0.07 and 0.079 g recorded by Abu-ghreb, but lowest root dry weight 0.008 g was recorded by Adena. While, a significant increase observed in proline content in all genotypes at 160 g PEG-8000/ L medium. Ezz, Sham-6, Azady, Rabeaa and Riagary seedlings’ accumulated more proline as compared to Tammuz-2, Adena, Abu-ghreb, Abehade and Ebba-99. According to the studied parameters a dendrogram constructed. The genotypes classified into two groups. Resistant; include Ezz, Sham-6, Azady, Rabeaa and Rizgary. Sensitive; includes Tammuz-2, Adena, Abu- ghreb, Abehade and Ebba-99.


PEG GI MDG CVG Shoot dry weight Proline

Article Details

How to Cite
Qadir, S. A. . (2019). Wheat Grains Germination and Seedling Growth Performance under Drought Condition. Basrah Journal of Agricultural Sciences, 31(2), 44–52.


  1. Ahmad, M.; Shabbir, G.; Minhas, N.M. & Shah, M.K.N. (2013). Identification of drought tolerant wheat genotypes based on seedling traits. Sarhad J. Agric., 29(1): 21- 27.
  2. Alaei, M.; Zaefizadeh, M.; Khayatnezhad, M.; Alaei, Z. & Alaei, Y. (2010). Evaluation of germination properties of different durum wheat genotypes under osmotic stress. Middle-East J. Sci. Res., 6(6): 642- 646.
  3. Almaghrabi, O.A. (2012). Impact of drought stress on germination & seedling growth parameters of some wheat cultivars. Life Sci. J., 9(1): 590-598.
  4. Association of Official Seed Analysis (AOSA). (1990). Rules for testing seeds. J. Seed Technol., 12: 1-112.
  5. Ba?ci, S.A.; Ekiz, H. & Yilmaz, A. (2003). Determination of the salt tolerance of some
  6. barley genotypes and the characteristics affecting tolerance. Turk. J. Agric. For., 27(5): 253-260.
  7. Bates, L.S.; Waldren, R.P. & Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39(1): 205-207.
  8. Besma, B.D. & Mounir, D. (2010). Biochemical and mineral responses of okra seeds (Abelmoschus esculentus L. variety Marsaouia) to salt and thermal stresses. J. Agron., 9(2): 29-37.
  9. Biaecka, B. & Kepczynski, J. (2010). Germination, a-, b-amylase and total dehydrogenase activities of Amaranthus caudatus seeds under water stress in the presence of ethephon or gibberellin A3. Acta Biol. Cracov. Ser. Bot., 52: 7-12.
  10. Bowne, J.B.; Erwin, T.A.; Juttner, J.; Schnurbusch, T.; Langridge, P.; Bacic, A. & Roessner, U. (2012). Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol. Plant, 5(2): 418-429.
  11. Chachar, M.H.; Chachar, N.A.; Chachar, S.D.; Chachar, Q.I.; Mujtaba, S.M. & Yousafzai, A. (2014). In-vitro screening technique for drought tolerance of wheat (Triticum aestivium L.) genotypes at early seedling stage. JAAT, 10(6): 1439-1450.
  12. Chen, D.; Wang, S.; Cao, B.; Cao, D.; Leng, G.; Li, H.; Yin, L.; Shan, L. & Deng, X. (2016). Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front Plant Sci., 6: 1241- 1247.
  13. Dodd, G.L. & Donovan, L.A. (1999). Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am. J. Bot., 86(8): 1146-1153.
  14. Fathi, A. & Tari, D.B. (2016). Effect of drought stress and its mechanism in plants. NepJOL, 10(1): 1-6.
  15. ISTA. (1999). International rules for seed testing. International Seed Testing Association (ISTA), Seed Science and Technology: 287pp.
  16. Jajarmi, V. (2009). Effect of water stress on germination indices in seven wheat cultivar. WASET, 49: 105-106.
  17. Khakwani, A.A., Dennett, M.D. & Munir, M., (2011). Drought tolerance screening of wheat varieties by inducing water stress conditions. Songklanakarin J. Sci. Technol., 33(2): 645- 652.
  18. Kumar, S.; Singh, A.K. & Singh, R. (2011). Diversity analysis of wheat genotypes based on morpho-physiological and RAPD markers in relation to moisture stress. VEGETOS J., 24(2): 217-224.
  19. Lamaoui, M.; Jemo, M.; Datla, R. & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Front. Chem., 6: 26. doi: 10.3389/fchem.2018.00026.
  20. Liu M.; Li M.; Liu K., & Sui N. (2015). Effects of drought stress on seed germination and seedling growth of different maize varieties. JAS, 7(5): 231-240.
  21. Manoj, K. & Uday, D. (2007). In vitro screening of tomato genotypes for drought resistance using polyethylene glycol. Afr. J. Biotechnol, 6(6): 673-682.
  22. Metwali, E.M.; Eid, M.H. & Bayoumi, T.Y. (2011). Agronomical traits and biochemical genetic markers associated with salt tolerance in wheat cultivars (Triticum aestivum L.). Aust. J. Basic Appl. Sci., 5(5): 174-183.
  23. Mwadzingeni, L.; Shimelis, H.; Tesfay, S. & Tsilo, T.J. (2016). Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front Plant Sci., 7: 127-136.
  24. Qadir, S.A.; Khursheed, M.Q. & Huyop, F.Z. (2016). In vitro culture characters of some bread wheat genotypes under drought stress condition. Ziraat Fakültesi Dergisi, 30(Special Issue): 11-16.
  25. Sadeghi, H.; Fardin, K.; liela, Y. & Saman, S. (2011). Effect of seed osmopriming on seed germination behavior and vigor of soybean (Glycin max L.). ARPN. J. Agric. Biol. Sci., 6(1): 39-43.
  26. Sankar, B.; Jaleel, C.A.; Manivannan, P.; Kishorekumar, A.; Somasundaram, R. & Panneerselvam, R. (2007). Drought induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench. Acta Bot. Croat., 66(1): 43-56.
  27. Scott, S.J.; Jones, R.A. & Williams, W. (1984). Review of Data Analysis Methods for Seed Germination. Crop Sci., 24(6): 1192-1199.
  28. Shaheen, R. & Hood-Nowotny, R.C. (2005). Effect of drought and salinity on carbon isotope discrimination in wheat cultivars. Plant Sci., 168(4): 901-909.
  29. Shekari, F.; Javanshir, A.; Shakiba, M.R.; Moghaddm, M. & Alyari, H. (2000). Enhancement of canola seed germination and seedling emergence in low water potentials by priming. Turk. J. Field Crops, 5(2): 54-60.
  30. Sneath P.H.A. & Sokal R.R. (1973). Numerical taxonomy: The principle and practice of numerical classification. W.F. Freeman and C.O..; San Francisco: 573pp.
  31. Steel, R.G.; Torrie, J.H. & Dickey, D.A. (1980). Principal and procedures of statistics: A biometrical approach. Mc Grow Hill Book Company, New York: 121pp.
  32. Taiz, L. & Zeiger, E. (2006). Auxin: The growth hormone. Plant Physiol., 4(1): 468-507.
  33. Takezaki, N. & Nei, M. (1996). Genetic distances and reconstruction of phylogenetic tree from microsatellite DNA. Genetics, 144: 389-399.
  34. Zeid, I.M. & Shedeed, Z.A. (2006). Response of alfalfa to putrescine treatment under drought stress. Biol. Plantarum, 50(4): 635- 641.