Main Article Content

Abstract

The use of nanofertilizers has increased dramatically in the last several years. Environmentally sustainable Fe2O3-nano-fertilizers are important for improving agricultural yields and physics. However, overuse of chemical nanofertilizers can have negative effects on both human health and the environment. Soil and plants are the most vital natural resources for human life and development, and both collect high concentrations of residues from nano-fertilizers. Numerous techniques have been proposed for producing nano fertilizers aimed at enhancing the germination rate, wetness, length, power, and dry weight of seedlings. A fresh study on the effects of hydrothermally prepared nano fertilizers made from yeast extract on the development and germination of Nigella sativa seeds. Fe2O3-Nano particles were produced with an average crystallite size of 12–39 nm, as shown by XRD. The FE-SEM-Pictures of Fe2O3-NPs display the morphologies of Nanostructures or Nano tapes. Fe2O3-NPs' optical properties reveal an absorbance band and an energy bandgap with maximal absorbance peaks at 231 nm and optical energy gaps of 3,8 eV, respectively. The outcome the impact of nano fertilizers (Fe2O3) on the development and germination of Nigella sativa seeds has been investigated through this activity. The study's treatments had a significant impact on the germination period; For example, when soaked in a suspension of baking yeast at a concentration of 1 g L-1, the germination period dropped to 14.71 days from 18.10 days for the control treatment. Less soaked in 1 mg L-1 of Nano Bread Yeast Extract, the Germination Duration was 14.16 days.

Keywords

Fe2O3 NPs Hydrothermal method Nano-fertilizer Nigella sativa seeds Yeast extract

Article Details

How to Cite
Al-Hatem, J. Y. . ., Kadhim, D. A. ., & Abid, M. A. . (2025). Developing A Nano-Fertilizer of Iron Oxide NPs Using Yeast Extract and Studying its Effectiveness on the Growth and Germination of Nigella sativa Seeds. Basrah Journal of Agricultural Sciences, 38(1), 235–247. https://doi.org/10.37077/25200860.2024.38.1.19

References

  1. Abbas, S. H. (2023). Genetic stability of different genotypes of bread wheat (Triticum aestivum L.) grown under levels of nitrogen fertilizer. Basrah Journal of Agricultural Sciences, 36(2), 30-46. https://doi.org/10.37077/25200860.2023.36.2.03
  2. Abd El-Hack, M., Alaidaroos, B & Farsi, R. M., Abou-Kassem, D., El-Saadony, M., Saad, A., Ashour, E. (2021). Impacts of supplementing broiler diets with biological curcumin, zinc nanoparticles and Bacillus licheniformis on growth, carcass traits, blood indices, meat quality and cecal microbial load. Animals, 11(7), 1878.‏ https://doi.org/10.3390/ani11071878
  3. Abdullah, N. A., Alpresem, W. F., & Hzaa, A. Y. L. (2025). Effect of Plant Extracts and Nano-Selenium on the Anatomical Characteristics of Mango Seedling Leaves (Mangifera indica L.) Under Stress Conditions. In IOP Conference Series: Earth and Environmental Science (Vol. 1487, No. 1, p. 012042). IOP Publishing.‏ https://iopscience.iop.org/article/10.1088/1755-1315/1487/1/012042
  4. Abid, M., Abid, D., Aziz, W& Rashid, T. M. (2021). Iron oxide nanoparticles synthesized using garlic and onion peel extracts rapidly degrade methylene blue dye. PhysicaB: CondensedMatter, 622, 413277. http://doi.org/10.1016/j.physb.2021.413277
  5. Abid, M. & Kadhim, D. (2020). Novel comparison of iron oxide nanoparticle preparation by mixing iron chloride with henna leaf extract with and without applied pulsed laser ablation for methylene blue degradation. Journal of Environmental Chemical Engineering, 8(5), 104138.‏ http://doi.org/10.1016/j.jece.2020.104138
  6. Abid, M. & Kadhim, D. (2022). “Synthesis of iron oxide nanoparticles by mixing chilli with rust iron extract to examine antibacterial activity”. Materials Technology, 37(10), 1494-1503.‏ http://doi.org/10.1080/10667857.2021.1959189
  7. Abid, M., Kadhim, D. & Aziz, W. (2022). Iron oxide nanoparticle synthesis using trigonella and tomato extracts and their antibacterial activity. Materials Technology, 37(8), 547-554.‏ http://doi.org/10.1080/10667857.2020.1863572
  8. Al-Atrakchii A. O., J. Y. Qasem A. & A. Khattab. (2019). Response of Fenugreek Trigonella foenum-graecum L. to Pinching, Fertillization with Nitrogen and Cobalt Chloride. Plant Archives Vol. 19 No. 2, 2019 pp. 3689-3694.
  9. Al-Hatem, G. (2018). Effect of Nitrogenic Fertilizer and Seaweed Extract (Fitoalg) in some Green Growth and Total Yield on the Plant Coriander, Coriandrum sativum L. Journal Tikrit Univ. For Agri. Sci. Vol. (18) No. (4), ISSN-1813-1646. http://doi.org/10.1002/jsfa.3535
  10. Al-Hatem, J. Y., A. A. yahya, A. A.Hamed & B. Kallel. (2019). Effect of zinc oxide molecules and zinc sulfate on some vegetative growth and flowering in Carnation (Dianthus caryophyllus L.). Plant Archives Vol. 19 No. 2, pp. 3743-3748. https://www.researchgate.net/publication/338491039.
  11. Almayyahi, M. S., & Al-Atab, S. M. (2024). Evaluating land suitability for wheat cultivation criteria analysis fuzzy-AHP and geospatial techniques in Northern Basrah Governorate. Basrah Journal of Agricultural Sciences, 37(1), 212-223.
  12. Barabadi, H., Najafi, M., Samadian, H., Azarnezhad, A., Vahidi, H., Mahjoub, M. A & Ahmadi, A. (2019). A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing? Medicina, 55(8), 439. http://doi.org/10.3390/medicina55080439
  13. Barabadi, H., Tajani, B., Moradi, M., Damavandi Kamali, K., Meena, R., Honary, S & Saravanan, M. (2019). Penicillium family as emerging nanofactory for biosynthesis of green nanomaterials: a journey into the world of microorganism". Journal of Cluster Science, 30, 843-856. http://doi.org/10.1007/s10876-019-01554-3
  14. Ben Soltan, W., Lasssoued, M., Ammar, S., Toupance, T., (2017) J. Mater. Sci.: Mater.Electron. 28, 15826-15834. http://doi.org/10.1016/j.rinp.2017.07.066.
  15. Bishnoi, S., Kumar, A & Selvaraj, R. (2018). Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Materials Research Bulletin, 97, 121-127. http://doi.org/10.1016/j.materresbull.2017.08.040
  16. Denk, Y., & Tarhan, T. (2023). “Çinkooksit Nanopartiküllerin Biyosentezi ve Biyolojik Aktiviteleri”. Doğa Bilimleri Ve Matematikte Güncel Yaklaşimlar, 91-115.
  17. Elbasuney, S., El-Sayyad, G., Attia, M. & Abdelaziz, A. M. (2022). Ferric oxide colloid: Towards green nano-fertilizer for tomato plant with enhanced vegetative growth and immune response against fusarium wilt disease”. Journal of Inorganic and Organometallic Polymers and Materials, 32(11), 4270-4283. http://doi.org/10.1007/s10904-022-02442-6
  18. El-Saadony, M., ALmoshadak, A., Shafi, M., Albaqami, N., Saad, A., El-Tahan, A & Helmy, A. (2021). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi journal of biological sciences, 28(12), 7349-7359. https://doi.org/10.1016/j.sjbs.2021.08.032
  19. Jach, M., Serefko, A., Ziaja, M & Kieliszek, M. (2022). Yeast protein as an easily accessible food source. Metabolites, 12(1), 63. http://doi.org/10.3390/metabo12010063
  20. Jahangirian, H., Rafiee-Moghaddam, R., Jahangirian, N., Nikpey, B., Jahangirian, S., Bassous, N., Webster, T. J. (2020). “Green synthesis of zeolite/Fe2O3 nanocomposites: toxicity & cell proliferation assays and application as a smart iron nanofertilizers”. International journal of nanomedicine, 1005-1020.‏ http://doi.org/10.2147/IJN.S231679
  21. Kadhim, D., Abid, M., Abdulghany, Z., Yahya, J., Kadhim, S., Aziz, W., & Al-Marjani, M. (2022). Iron oxide nanoparticles synthesized using plant (Beta vulgaris and Punica granatum) extracts for a breast cancer cell line (MCF-7) cytotoxic assay. Materials Technology, 37(13), 2436-2444. http://doi.org/10.1080/10667857.2022.2038766
  22. Karpagavinayagam, P., & Vedhi, C. (2019). “Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract”. Vacuum, 160, 286-292. https://doi.org/10.1016/j.vacuum.2018.11.043
  23. Khatua, A., Priyadarshini, E., Rajamani, P., Patel, A., Kumar, J., Naik, A & Meena, R. (2020). Phytosynthesis, characterization and fungicidal potential of emerging gold nanoparticles using Pongamia pinnata leave extract: a novel approach in nanoparticle synthesis. Journal of Cluster Science, 31, 125-131. http://doi.org/10.1007/S10876-019-01624-6
  24. Kingslin, A., Kalimuthu, K., Kiruthika, M., Khalifa, A., Nhat, P & Brindhadevi, K. (2023). Synthesis, characterization and biological potential of silver nanoparticles using Enteromorpha prolifera algal extract. Applied Nanoscience, 13(3), 2165-2178. http://doi.org/10.1007/s13204-021-02105-x
  25. Kumar, J., Krithiga, T., Manigandan, S., Sathish, S., Renita, A., Prakash, P & Crispin, S. (2021). “A focus to green synthesis of metal/metal-based oxide nanoparticles: Various mechanisms and applications towards ecological approach”. Journal of Cleaner Production, 324, 129198.‏ http://doi.org/10.1016/j.jclepro.2021.129198
  26. Lassoued, A., Lassoued, M., B. Dkhil, A. Gadri, & S. Ammar, (2019) J. Mol. Struct.1141, 99-106. http://doi.org/10.1016/j.jmmm.2018.12.062
  27. Lazim, S. K., & Ramadhan, M. N. (2020). Effect of microwave and UV-C radiation on some germination parameters of barley seed using mathematical models of Gompertz and logistic: Analysis study. Basrah Journal of Agricultural Sciences, 33(2), 28–41. https://doi.org/10.37077/25200860.2020.33.2.03
  28. Malhotra, S. (2021). “Biomolecule-Assisted Biogenic Synthesis Metallic Nanoparticles”: Agri-Waste and Microbes for Production of Sustainable Nanomaterials. http://doi.org/10.1016/B978-0-12-823575-1.00011-1
  29. Malhotra, S., & Alghuthaymi, M. (2022). Biomolecule-assisted biogenic synthesis of metallic nanoparticles. Agri-Waste and Microbes for Production of Sustainable Nanomaterials, 139-163. http://doi.org/10.1016/B978-0-12-823575-1.00011-1
  30. Muzafar, W., Kanwal, T., Rehman, K., Perveen, S., Jabri, T., Qamar, F & Shah, M. R. (2022). Green synthesis of iron oxide nanoparticles using Melia azedarach flowers extract and evaluation of their antimicrobial and antioxidant activities. Journal of Molecular Structure, 1269, 133824.‏ http://doi.org/10.1016/j.molstruc.2022.133824
  31. Nusseif, A., Abdul-Majeed, A & Hameed, N. S. (2022). Synthesis and Characterization of α-Fe2O3 NPs/P-Si Heterojunction for Highly Sensitive Photodetector. Silicon, 14(4), 1817-1821.‏ http://doi.org/10.1007/s12633-021-00971-2
  32. Panwar, N., Saritha, M., Kumar, P., & Burman, U. (2023). A common platform technology for green synthesis of multiple nanoparticles and their applicability in crop growth. International Nano Letters, 13(2), 177-183. http://doi.org/10.1007/s40089-023-00399-z
  33. Ramadhan, V., Ni’Mah, Y., Yanuar, E & Suprapto, S. (2019). Synthesis of copper nanoparticles using Ocimum tenuiflorum leaf extract as capping Agent. In AIP Conference Proceedings (Vol. 2202, No. 1). AIP Publishing. http://doi.org/10.1063/1.5141680
  34. Raouf, R., Owaid, K., & Rahma, N. (2018).” Eco-Friendly Polysulfone Tricomposite for Dual Protection from UV Rays”. Journal of Engineering and Sustainable Development, 22(2), 65-75.‏ https://doi.org/10.31272/jeasd.2018.2.68
  35. Rihab, B., Mejda A., Atef T., Najoua T., & Adnane Abdelghani (2018). Substrate temperature effect on the crystal growth and optoelectronic properties of sprayed α-Fe2O3 thin films: application to gas sensor and novel photovoltaic solar cell structure, Materials Technology. http://doi.org/10.1080/10667857.2018.1503385
  36. Shanwaz, M., & Shyam, P. (2023). Anti-bacterial effect and characteristics of gold nanoparticles (AuNps) formed with Vitex negundo plant extract. Applied Biochemistry and Biotechnology, 195(3), 1630-1643. http://doi.org/10.1007/s12010-022-04217-8
  37. Shirsat, S., Chakranarayan, M., Achal, V. & Rai, M. (2023). Green synthesis of silver nanoparticles (AgNPs) using Alstonia scholaris extract: Evaluation of their antioxidant, enzyme inhibitory, antimicrobial, and antimutagenic activities through in vitro and in silico studies. http://doi.org/10.21203/rs.3.rs-3501429/v1
  38. Taghavi Fardood, S., Moradnia, F., Moradi, S., Forootan, R., Yekke Zare, F & Heidari, M. (2019). “Eco-friendly synthesis and characterization of α-Fe2O3 nanoparticles and study of their photocatalytic activity for degradation of Congo red dye”. Nanochemistry Research, 4(2), 140-147.‏ http://doi.org/10.22036/ncr.2019.02.005.
  39. Upadhyay, R., & Bano, S. (2023). A Review on Terpenoid Synthesized Nanoparticle and It's Antimicrobial Activity. Oriental Journal of Chemistry. 39(2), http://doi.org/10.13005/ojc/390226
  40. Varadharaj, V., Ramaswamy, A., Sakthivel, R., Subbaiya, R., Barabadi, H., Chandrasekaran, M., & Saravanan, M. (2020). Antidiabetic and antioxidant activity of green synthesized starch nanoparticles: an in vitro study. Journal of Cluster Science, 31, 1257-1266. https://doi.org/10.1007/s10876-019-01732-3