Main Article Content

Abstract

In this work, the Curcumin synthase 1 (CURS1) gene from Curcuma longa L., which plays an important role in the biosynthesis of the curcumin compound, was chosen. The objectives were to identify the genetic variations of CURS1 in two turmeric plant varieties (NDH-98 and GNT-2) and their relationship with curcumin content. Using DNA sequencing technology, the results were analyzed, and the three-dimensional structure of the CURS1 protein was modeled in silico. The primer employed in this investigation amplified 900 bp fragments of the CURS1 gene. A single nucleotide polymorphism (SNP) was identified in the first exon (g.850 C>G), which resulted in a change in the three-dimensional structure of the protein due to the substitution of the amino acid threonine with arginine. Haplotype and nucleotide diversity values were 1.00 and 0.00169, respectively. This investigation involved a relative measurement of the putative CURS1 gene using DNA sequencing from the roots of GNT-2, compared to NDH-98, and an HPLC-assisted curcumin measurement for the two varieties. The amount of curcumin in the rhizomes of GNT-2 was 784.0 µg g-1, while in NDH-98, it was 712.1 µg g-1. The DPPH assay, which evaluates the free radical scavenging capacity of extracts, revealed that the methanolic fraction of Curcuma longa (NDH-98 and GNT-2) demonstrated a significant capacity to inhibit free radicals, with an IC50 value exceeding 125% of the total extract's capacity. Consequently, the methanolic extracts of NDH-98 and GNT-2 exhibited significant effects in the DPPH assay for scavenging free radicals, and regulating vitamin D levels.

Keywords

Antioxidant activity Curcuma longa CURS1 gene protein three dimensions single nucleotide polymorphism

Article Details

How to Cite
Abd Al-Behadili, W. A. ., Hasan, F. A. ., Ahmed, T. S., & Faraj, S. H. . (2025). Molecular and Chemical Diagnosis of Curcumin ‏Compound and Study its Antioxidant Activity in Two Varieties of Curcuma longa L. Plants. Basrah Journal of Agricultural Sciences, 38(1), 102–114. Retrieved from https://www.bjas.bajas.edu.iq/index.php/bjas/article/view/2527

References

  1. Akter, J., Hossain, M.A., Takara, K., Islam, M.Z. & Hou, D.X. (2019). Antioxidant activity of different species and varieties of turmeric (Curcuma spp): Isolation of active compounds. Comp. Biochem. Physiol. C Toxicol Pharmacol. 215:9-17. https://doi.org/10.1016/j.cbpc.2018.09.002
  2. Akter, M.J., Khatun, R., Khatune, N.A., Alam, A.K. & Rahman, M.A.A. (2022) In vitro Antioxidant and Free Radical Scavenging Activity of the Bark of Dillenia indica L. Bangladesh Pharmaceutical Journal, 25, 38-43. https://doi.org/10.3329/bpj.v25i1.57839
  3. Alafiatayo, A.A., Syahida, A. & Mahmood, M. (2014). Total anti-oxidant capacity, flavonoid, phenolic acid and polyphenol content in ten selected species of zingiberaceae rhizomes. Afr. J. Tradit. Complement. Altern. Med. 11, 7-13. https://doi.org/10.4314/ajtcam.v11i3.2
  4. Ateya A., Al-Sharif, M., Faraj, S. H., Abdo, M., Fericean, L., Banatean-Dunea, I., Hammad, S.J., Mamdouh, M., Fayed, H., Marawan, A. M. & Raslan, W.S. (2023). Exploring genetic polymorphisms and transcript levels of antioxidant and metabolic markers for prediction and monitoring diarrhea in Holstein dairy calves. Acta Agriculturae Scandinavica, Section A - Animal Science. 73(3–4), 86–96. https://doi.org/10.1080/09064702.2023.2274881
  5. Austin, M.B. & Noel, J.P. (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110. https://doi.org/10.1039/B100917F
  6. Ayer, D.K., Modha, K.G., Parekh, V.B., Patel, R. K., Ramtekey, V. & Bhuriya, A. P. (2018). Comparative gene expression study between two turmeric (Curcuma longa L.) cultivars. Journal of Spices and Aromatic Crops, 27 (2): 131-137, https://doi.org/10.25081/josac.2018.v27.i2.1101
  7. Ayer, D.K., Modha, K., Parekh, V., Patel, R.G., Ramtekey, V. & Bhuriya, A. (2020). Associating gene expressions with curcuminoid biosynthesis in turmeric. J. Genet. Eng. Biotechnol. Dec 14;18(1):83. https://doi.org/10.1186/s43141-020-00101-2
  8. Ayati, Z., Ramezani, M., Amiri, M.S., Moghadam, A.T., Rahimi, H., Abdollahzade, A., Sahebkar, A. & Emami, S.A. (2019). Ethnobotany, Phytochemistry and Traditional Uses of Curcuma spp. and Pharmacological Profile of Two Important Species (C. longa and C. zedoaria): A Review. Curr Pharm, 25(8):871-935. https://doi.org/10.2174/1381612825666190402163940
  9. Al-Behadili, W. A. A., Saleh, M. H. & Faraj, S. H. (2024). Effects of Mimosa pudica L. Leaves Extracts on Some Physiological Traits of Broiler Chicken. IOP Conf. Series: Earth and Environmental Science1, 371, 1-6. https://iopscience.iop.org/article/10.1088/1755-1315/1371/5/052033
  10. Borah, A., Paw, M., Gogoi, R., Loying, R., Sarma, N., Munda, S., & Lal, M. (2019). Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesiaRoxb. leaves: An endangered medicinal plant of North East India. Industrial crops and products, 129, 448-454. https://doi.org/10.1016/j.indcrop.2018.12.035
  11. Chakraborty, A., Mahajan, S., Jaiswal, S.K. & Sharma, V.K. (2021). Genome sequencing of turmeric provides evolutionary insights into its medicinal properties. Commun. Biol. 4(1):1193. https://doi.org/10.1038%2Fs42003-021-02720-y
  12. Faraj, S. H., Putra, W. P., & Tyasi, T. L. (2023). Detection of SNPs in FABP4 Gene and Its Relationship with Milk Quality Traits in Iraqi Jenoubi Cows. Basrah Journal of Agricultural Sciences, 36(1), 131-139. https://doi.org/10.37077/25200860.2023.36.1.11
  13. Gilani, S.A., Kikuchi, A., Shimazaki, T., Wicaksana, N. & Watanabe, K.N. (2015). Molecular genetic diversity of curcuminoid genes in Curcuma amada: Curcuminoid variation, consideration on species boundary and polyploidy. Biochem. Syst. Ecol., 61, 186-195. https://doi.org/10.1016/j.bse.2015.06.020
  14. Godic, A., Poljšak, B., Adamic, M. & Dahmane, R. (2014). The role of antioxidants in skin cancer prevention and treatment. Oxid. Med. Cell Longev.,1-6. https://doi.org/10.1155%2F2014%2F860479
  15. Hall T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
  16. Hatem, A.H., Faraj, S.H. & Jazza, S.H. (2024). Genetic variation in the CYP1A gene caused by laboratory exposure of benzo (a) pyrene to common carp. Journal of Global Innovations in Agricultural Sciences., 12(1):161-167. https://www.jgiass.com/search.php?search_by=t&txt=CYP1A+gene
  17. Jyotirmayee, B. & Mahalik, G. (2022). A review on selected pharmacological activities of Curcuma longa L. International Journal of Food Properties, 25(1): 1377-1398. https://doi.org/10.1080/10942912.2022.2082464
  18. Katsuyama, Y., Kita, T., Funa, N. & Horinouchi, S. (2009a). Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. Journal of Biological Chemistry 284:11160–11170. https://doi.org/10.1074/jbc.M900070200
  19. Katsuyama, Y., Kita, T. & Horinouchi, S. (2009b). Identification and characterization of multiple curcumin synthases from the herb Curcuma longa. FEBS Lett., 583, 2799-2803. https://doi.org/10.1016/j.febslet.2009.07.029
  20. Kelley L.A., Mezulis S., Yates C.M., Wass M.N., & Stemberg M.J. (2015). The Phyre2 web portal for protein modeling, prediction, and analysis. Nature Protocols. 10, 845-858. https://doi.org/10.1038/nprot.2015.053
  21. Kita, T., Komatsu, K., Zhu, S., Iida, O., Sugimura, K., Kawahara, N., Taguchi, H., Masamura, N. & Cai, S.Q. (2016). Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase fordiscriminating Curcuma species. Food Chem. 194, 1329-1336. https://doi.org/10.1016/j.foodchem.2015.08.034
  22. Koo, H.J., McDowell, E.T., Ma, X., Greer, K.A., Kapteyn, J., Xie, Z., Descour, A., Kim, H.,Yu, Y., Kudrna, D., Wing, R.A., Soderlund, C.A. & Gang, D.R. (2013). Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids. BMC Plant Biol. 13, 27,http://doi.org/10.1186/1471-2229-13-27
  23. Krup, V., Prakash, L.H. & Harini A (2013) Pharmacological activities of turmeric (Curcuma longa linn): a review. J Homeop. Ayurv Med 2(4): 1-4. https://doi.org/10.4172/2167-1206.1000133
  24. Kocaadam, B., & Şanlier, N. (2017). Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition, 57(13), 2889–2895. https://doi.org/10.1080/10408398.2015.1077195
  25. Lan, T.T.P., Huy, N.D., Luong, N.N., Nghi, N.V., Tan, T.H., Quan, L.V. & Loc, N.H. (2018). Identification and Characterization of Genes in the Curcuminoid Pathway of Curcuma zedoaria Roscoe. Curr Pharm Biotechnol., 19(10):839-846. https://doi.org/10.2174/1389201019666181008112244
  26. Lawi, Z. K. K., Merza, F. A., Banoon, S. R., Jabber Al-Saady, M. A. A., & Al-Abboodi, A. (2021). Mechanisms of Antioxidant Actions and their Role in many Human Diseases: A Review. Journal of Chemical Health Risks, 11: 45-57. https://doi.org/10.22034/jchr.2021.683158
  27. Lee, S. E., Hwang, H. J., Ha, J. S., Jeong, H. S. & Kim, J. H. (2003). Screening of medicinal plant extracts for antioxidant activity. Life Sci.,73(2):167-79. https://doi.org/10.1016/s0024-3205(03)00259-5
  28. Lim, J., Nguyen, T.T.H., Pal, K., Gil Kang, C., Park, C., Kim, S.W. & Kim, D. (2021). Phytochemical properties and functional characteristics of wild turmeric (Curcuma aromatica) fermented with Rhizopus oligosporus. Food Chem X. 30; 13: 100198. https://doi.org/10.1016/j.fochx.2021.100198
  29. Lim, H.S., Park, S.H., Ghafoor, K., Hwang, S.Y. & Park, J. (2011). Quality and antioxidant properties of bread containing turmeric (Curcuma longa L.) cultivated in South Korea, Food Chemistry, 124(4): 1577-1582. https://doi.org/10.1016/j.foodchem.2010.08.016
  30. Liu, Q., Zhu, S., Hayashi, S., Iida, O., Takano, A., Miyake, K., Sukrong, S., Agil, M., Balachandran, I., Nakamura, N., Kawahara, N. & Komatsu, K. (2022). Discrimination of Curcuma species from Asia using intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. J. Nat. Med., 76:69-86. https://doi.org/10.1007%2Fs11418-021-01558-2
  31. Lobo, R.; Prabhu, K.S., Shirwaikar, A. & Shirwaikar, A. (2009). Curcuma zedoaria Rosc. (white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties. J. Pharm. Pharmacol., 61: 13-21. https://doi.org/10.1211/jpp.61.01.0003
  32. Mensor L. L, Menezes, F.S., Leitão, G.G., Reis, A.S., dos Santos, T.C., Coube, C.S. & Leitão, S.G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res. 15(2):127-30. https://doi.org/10.1002/ptr.687
  33. Naidu, M.M., Shyamala, B.N., Manjunatha, J.R., Sulochanamma, G. & Srinivas, P. (2009). Simple HPLC method for resolution of curcuminoids with antioxidant potential. J. Food Sci.;74(4):C312-8. https://doi.org/10.1111/j.1750-841.2009.01124.x
  34. Pham-Huy, L.A., He, H. & Pham-Huyc, C. (2008). Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 4, 89–96. http://doi.org/10.59566/IJBS.2008.4089
  35. Rafi, M., Wulansari, L., Heryanto, R., Darusman, L.K., Lim, L.W. & Takeuchi, T. (2015) Curcuminoid’s content and fingerprint analysis for authentication and discrimination of Curcuma zanthorrhiza from Curcuma longa by high-performance liquid chromatography-diode array detector. Food Anal Method 8:2185–2193. https://doi.org/10.1007/s12161-015-0110-1
  36. Ramadan, G., Al-Kahtani, M.A. & El-Sayed, W.M. (2011). Anti-inflammatory and antioxidant properties of Curcuma longa (turmeric) versus Zingiber officinale (ginger) rhizomes in rat adjuvant-induced arthritis. Inflammation 34, 291–301. https://doi.org/10.1007/s10753-010-9278-0
  37. Reynolds C.R., Islam S.A. & Sternberg M.J.E. (2018). EzMol: A web server wizard for the rapid visualization and image production of protein and nucleic acid structures. J. Mol. Biol. 430, 2244-2248. https://doi.org/10.1016/j.jmb.2018.01.013
  38. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E. &Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Mol. Biol. Evol. 34: 3299-3302. https://doi.org/10.1093/molbev/msx248
  39. Sandeep, I.S., Das, S., Nasim, N., Mishra, A., Acharya, L., Joshi, R. K., Nayak, S. & Mohanty, S. (2017) Differential expression of CURS gene during various growth stages, climatic condition and soil nutrients in turmeric (Curcuma longa): towards site specific cultivation for high curcumin yield. Plant Physiol Biochem 118: 348-355. https://doi.org/10.1016/j.plaphy.2017.07.001
  40. Santhoshkumar, R. & Yusuf, A. (2020). In Silico structural modeling and analysis of physicochemical properties of curcumin synthase (CURS1, CURS2, and CURS3) proteins of Curcuma longa. J. Genet. Eng. Biotechnol. l 2;18(1):24. https://doi.org/10.1186/s43141-020-00041-x
  41. Santhoshkumar, R. & Yusuf, A. (2021). Comparative differential expression of CURS genes and determination of curcumin content at different growth stages of Curcuma longa L. and its wild relative C. zanthorrhiza Roxb. Genet. Resour. Crop Evol. 68: 105-116. https://doi.org/10.1007/s10722-020-00970-z
  42. Sheu, S. C., Wu, Y. C., Lien, Y. Y. & Lee, M. S. (2021). Specific, sensitive and rapid Curcuma longa turmeric powder authentication in commercial food using loop-mediated isothermal nucleic acid amplification. Saudi J Biol Sci. 28(10):5931-5936. https://doi.org/10.1016/j.sjbs.2021.06.057.
  43. Wichitnithad, W., Jongaroonngamsang, N., Pummangura, S, & Rojsitthisak, P. (2009). A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem Anal 20:314-319. https://doi.org/10.1002/pca.1129