Main Article Content

Abstract

Diatoms have dominance in most Iraqi aquatic environments, such as in the Al-Hammar Marsh in southern Iraq, thus they are reflecting the quality of water and environmental factors prevailing in their places of residence. The East Hammar marsh in southern Iraq has experienced substantial environmental changes especially the high temperature and salinity during the last decades. Water quality has deteriorated which has impacted the living species that reside there, the most important of which are diatoms.  During August 2018 to April 2019, qualitative and quantitative characteristics of the planktonic and epiphytic diatoms were studied in the East Hammar marsh at three sites, Al-Sadda, Al-Salal, and Al-Burka. During this investigation, 69 taxa belonging to 37 genera were identified and documented. Diatom assemblages contained 30% of brackish water forms, 21 % of marine-brackish water species, 16 % of fresh species, 10% of marine water species, and the remaining 23% had varied ecological preferences ranging from fresh to marine forms. Marine-brackish water species predominate during the summer, whereas freshwater species predominate during the winter.

Keywords

Bacillariophyta Environmental influence Epiphyte Plankton Marshland

Article Details

How to Cite
Al-Shaheen, M. A. ., Al-Abbawy , D. A. ., & Al-Ahmady, S. S. . (2025). The Critical Changes in Composition of Diatoms Community in East Hammar Marsh, Southern Iraq. Basrah Journal of Agricultural Sciences, 38(1), 30–47. Retrieved from https://www.bjas.bajas.edu.iq/index.php/bjas/article/view/2514

References

  1. Al-Handal, A. Y. (2022). Pinnularia furatensis sp. nov. (Bacillariophyceae): a new brackish water diatom from the Euphrates River, Southern Iraq. Fundamental and Applied Limnology, 196(1), 75-81. https://doi.org/10.1127/fal/2022/1462
  2. Al-Handal, A. Y., & Al-Shaheen, M. A. (2019). Diatoms in the wetlands of Southern Iraq. Bibliotheca Diatomologica, 67. Gebr. Schweizerbart and Borntraeger science publishers, Stuttgart, 252pp. https://www.schweizerbart.de/publications/detail/isbn/9783443570583
  3. Al-Handal, A. Y. & Wulff, A. (2008). Marine epiphytic diatoms from the shallow sublittoral zone in Potter Cove, King George Island, Antarctica. Botanica Marina, 51(5), 411-435. https://doi.org/ 10.1515/BOT.2008.053
  4. Al-Handal, A. Y., Abdullah, D. S., Wulff, A. & Abdulwahab, M. T. (2014). Epiphytic diatoms of the Mesopotamian wetland: Huwaiza marsh, South Iraq. Diatom, 30, 1-15. https://doi.org/ 10.11464/diatom.30.164
  5. Al-Farhan, S. R. N. (2010). An ecological study of the benthic algae in some aquatic ecosystems of Basrah. M. Sc. Thesis, College of Science, University of Basrah, 212pp.
  6. Ansari, S. & Singh, S. K. (2017). Limnological Studies with reference to Phytoplankton Diversity in Ponds of Semiarid zone of Western Uttar Pradesh. Biological Forum – An International Journal, 9(2), 129-147.
  7. Banerjee, A., Chakrabarty, M., Rakshit, N., Bhowmick, AR. & Ray, S. (2019). Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: deep learning versus traditional regression approach. Ecological Indicators, 100, 99–117. https://doi.org/10.1016/j.ecolind.2018.09.051
  8. Bere, T., & Tundisi, J. G. (2011). The Effects of Substrate Type on Diatom-Based Multivariate Water Quality Assessment in a Tropical River (Monjolinho), São Carlos, SP, Brazil. Water, Air, and Soil Pollution, 216, 391-409. https://doi.org/10.1007/s11270-010-0540-8.
  9. Bere, T. (2014). Ecological preferences of benthic diatoms in a tropical river system in São Carlos-SP, Brazil. Tropical Ecology, 55, 47-61. https://www.researchgate.net/publication/235944013_Ecological_preferences_of_benthic_diatoms_in_tropical_river_system_Sao_Carlos-SP_Brazil.
  10. Berg, M., Meehan, M., Keena, M., Franzen, D. & Scherer, D. (2018). Phosphorus behavior in the environment. ndsu extension, NM1298, North Dakota State University, Fargo, 4pp.
  11. Cantonati, M., Kelly, M. G., & Lang-Bertalot, H. (eds.) (2017). Freshwater benthic diatoms of central Europe: over 800 Common species used in ecological assessments. English edition with updated taxonomy and added species. Schmitten- oberreifenberg: Koeltz Botanical Books, 942pp.
  12. Chatelard, G. & Abulhawa, T. (2015). The World Heritage Nomination of The Ahwar of Southern Iraq: Refuge of Biodiversity and Relict Landscape of the Mesopotamian Cities. Arab Regional Centre for World Heritage, Manama, Kingdom of Bahrain, 81pp.
  13. Desianti, N., Enache, M. D., Griffiths, M., Biskup, K., Dege, A., DaSilva, M., Millermann, D., Lippincott, L., Watson, E., Gray, A., Nikitina, D., & Potapova, M. (2019). The Potential and Limitations of Diatoms as Environmental Indicators in MidAtlantic Coastal Wetlands. Estuaries and Coasts, 42, 1440–1458. https://doi.org/10.1007/s12237-019-00603-4
  14. Falasco, E., Ector, L., Wetzel, C. E., Badino, G., & Bona, F. (2021). Looking back, looking forward: a review of the new literature on diatom teratological forms (2010–2020). Hydrobiologia, 848, 1675–1753. https://doi.org/10.1007/s10750-021-04540-x.
  15. Falciatore, A. & Mock, T. (2022). The Molecular Life of Diatoms. Springer Nature Switzerland A. G., Gewerbestrasse 11, 6330 Cham, Switzerland. 831pp. https://doi.org/10.1007/978-3-030-92499-7
  16. Faragallah, H. M., Askar, A. I., Okbah, M. A., & Moustafa, H. M. (2009). Physico-chemical characteristics of the open Mediterranean Sea water far about 60 Km from Damietta harbor, Egypt. Journal of Ecology and The Natural Environment, 1(5), 106-119. https://doi.org/10.5897/JENE.9000080
  17. Fernandez-Going, B., Even, T. & Simpson, J. (2013). The Effect of Different Nutrient Concentrations on the Growth Rate and Nitrogen Storage of Watercress (Nasturtium officinale R. Br.). Hydrobiologia, 705(1), 63–74. https://doi.org/10.1007/s10750-012-1380-x
  18. Giri, T., Goutam, U., Arya, A., & Gautam, S. (2022). Effect of Nutrients on Diatom Growth: A Review. Trends in Sciences, 19(2), 1752. https://doi.org/10.48048/tis.2022.1752
  19. Habeeb, M. K., Al-Shaheen, M. A., Abbas, A. F., Hamza, H. A., Okash, A. N., Hussain, N. A. and Reiss, P. (2023). The fragile ecology in Iraq’s Mesopotamian marshlands endangered and restructured by a sharp increase in salinity. GSC Advanced Research and Reviews, 16(1), 7-18. https://doi.org/10.30574/gscarr.2023.16.1.0298.
  20. Herbst, D. B., & Blinn, D. W. (1998). Experimental mesocosm studies of salinity effects on the benthic algal community of a saline lake. Journal of Phycology, 34, 772–778. https://doi.org/10.1046/j.1529-8817.1998.340772.x
  21. Hu, C., Ou, Y., Zhang, D., Zhang, H., Yan, C., Zhao, Y. & Zheng, Z. (2012). Phytoremediation of the polluted Waigang River and general survey on variation of phytoplankton population. Environmental Science and Pollution Research, 19, 4168-4175. https://doi.org/10.1007/s11356-012-0931-z
  22. Hustedt, F. (1959). Die Diatomeenflora des Neusiedler Sees in osterreichischen Burgenland. Osterreichischen Botanischen Zeitschrift, 106,390-430.
  23. Hofmann, G., Werum, M. & Lange-Bertalot, H. (2013). Diatomeen im Süßwasser Benthos von Mitteleuropa: Bestimmungsflora Kieselalgen für die ökologische Praxis, Koeltz Scientific Books, Königstein, Germany, 908pp.
  24. Hong, I., Horton, B. P., Hawkes, A. D., O'Donnell III, R. J., Padgett, J. S., Dura, T. & Engelhart, S. E. (2021). Diatoms of the intertidal environments of Willapa Bay, Washington, USA as a sea-level indicator. Marine Micropaleontology, 167, 102033. https://doi.org/10.1016/j.marmicro.2021.102033
  25. IMRP. (2018). Exploring Program Sustainability and Impact Twelve Years Later. USAID Iraq Marshlands Restoration Program (IMRP). Reiss, P. & Hussain, N. A. (Editors). DAI for the U.S. Agency for International Development, Bethesda, Maryland, 122pp.
  26. Ishizu, M. & Richards. K. J. (2013). Relationship between oxygen, nitrate, and phosphate in the world ocean based on potential temperature. Journal of Geophysical Research: Oceans, 118, 3586-3594, https://doi.org/10.1002/jgrc.20249
  27. Jaffer, E. M. (2010). Qualitative and quantitative study of the phytoplankton in some water bodies of Southern Iraq. M.Sc. Thesis, University of Basrah, 142pp. https://doi.org 10.13140/RG.2.2.29007.41120. (In Arabic).
  28. Jaffer, E. M., Al-Mousawi, N. J. & Al-Shawi, I. J. M. (2023). Impact of some environmental parameters on phytoplankton diversity in the eastern Al-Hammer marsh / southern Iraq. Baghdad Science Journal, 20(5), 42. https://doi.org/10.21123/bsj.2023.7590
  29. Jawad, L. A. (2021). Southern Iraq’s Marshes-Their Environment and Conservation. Coastal Research Library, company Springer Nature Switzerland AG, Gewerbestrasse 11, 6330 Cham, Switzerland, 815pp. https://doi.org/10.1007/978-3-030-66238-7
  30. Kamakura, S., Ashworth, M. P., Yamada, K., Mikami, D., Kobayashi, A., Idei, M., & Sato, S. (2022). Morphological plasticity in response to salinity change in the euryhaline diatom Pleurosira laevis (Bacillariophyta). Journal of Phycolology, 58(5), 631-642. https://doi.org/10.1111/jpy.13277
  31. Khairy, H. M., Shaltout, K. H., El-Sheekh, M. M. & Eassa, D. I. (2017). A Checklist of diatom species reported from the Egyptian Mediterranean Lakes. Annual research & Rreview in biology, 19(4), 1-29. https://doi.org/10.9734/ARRB/2017/36894
  32. Kociolek, J. P., Spaulding, S. A. & Lowe, R. L. (2015). Bacillariophyceae: The Raphid Diatoms. In: Wehr, J. D., Sheath, R. G. and Kociolek, J. P. (Editors). Freshwater Algae of North America Ecology and Classification, 2nd edition, Academic Press, 1050pp (Chapter 16: 709-772).
  33. Levkov, Z., Williams, D.M., Nikolovska, D., Tofilovska, S. & Čakar, Z. (2017). The Use of Diatoms in Forensic Science: Advantages and limitations of the diatom test in cases of drowning. In: Williams, M., Hill, T., Boomer, I. & Wilkinson, I. P. (Editors). The Archaeological and Forensic Applications of Microfossils: A Deeper Understanding of Human History. The Micropalaeontological Society, Geological Society of London: 261–277. https://doi.org/10.1144/TMS7.14
  34. Letáková, M., Fránková, M., & Poulíčková, A. (2018). Ecology and applications of freshwater epiphytic diatoms - review. Cryptogam Algology, 39(1), 3-22. https://doi.org/10.7872/crya/v39.iss1.2018.3
  35. Lobo. E. A., Heinrich, C. G., Schuch, M., Wetzel, C. E., & Ector, L. (2016). Chapter 11: Diatoms as Bioindicators in Rivers. Pp, 245-271. In: Necchi,
  36. Jr. O. (Editor). River Algae. Springer International Publishing, Switzerland. 279pp.
  37. Maulood, B. K., Hassan, F. M., Al-Lami, A. A., Toma, J. J. & Ismail, A. M. (2013). Checklist of algal flora in Iraq. Ministry of Environment, Iraq, 94pp.
  38. Mann, D. G. & Vanormelingen, P. (2013). An inordinate fondness? The number, distributions, and origins of diatom species. The Journal of eukaryotic microbiology, 60(4), 414-420. https://doi.org/10.1111/jeu.12047
  39. McNair, H. M., Brzezinski, M. A., & Krause, J. W. (2018). Diatom populations in an upwelling environment decrease silica content to avoid growth limitation. Environmental microbiology, 20(11), 4184–4193. https://doi.org/10.1111/1462-2920.14431
  40. Mebane, C. A., Ray, A. M. & Marcarelli, A. M. (2021). Nutrient limitation of algae and macrophytes in streams: Integrating laboratory bioassays, field experiments, and field data. Plos one, 16(6), e0252904. https://doi.org/10.1371/journal.pone.0252904
  41. Mohamad, H., Schimani, K., Al-Shaheen, M., Abarca, N., Jahn, R., Al-Handal, A., Kusber, W-H. & Zimmermann, J. (2024). Comparison of the biodiversity of epiphytic diatoms in the Euphrates-Tigris rivers using morphological and metabarcoding analyses. Metabarcoding & Metagenomics, 8, e135082. https://doi.org/10.3897/mbmg.8.135082
  42. Patrick, R., & Reimer, C. W. (1966). The Diatoms of the United States exclusive of Alaska and Hawaii. Monographs of the Academy of Natural Science 13, Philadelphia, 688pp.
  43. Poulsen, N., Davutoglu, M. G. & Zackova Suchanova, J. (2022). Diatom Adhesion and Motility. In: Falciatore A, & Mock T (Editors). The Molecular Life of Diatoms. Springer, Cham. 808pp. https://doi.org/10.1007/978-3-030-92499-7_14
  44. Rajwa-Kuligiewicz, A., Bialik, R. & Rowiński, P. (2015). Dissolved oxygen and water temperature dynamics in lowland rivers over various timescales. Journal of Hydrology and Hydromechanics, 63(4), 353-363. https://doi.org/10.1515/johh-2015-0041
  45. Reid, G. K. (1961). Ecology of inland water and estuaries. Reinhold publishing crop, New York, 375pp.
  46. Saki, S. H., & Al-Shaheen, M. A. (2025). Water quality assessment for the Southern Al-Hawizeh marsh using diatom indicators. Pollution, 11(2), 454-463. https://doi.org/10.22059/poll.2024.380917.2510
  47. Sawai, Y., Nagumo, T., Namegaya, Y., Cisternas, M. V., Lagos, M., & Shishikura, M. (2017). Diatom (Bacillariophyceae) assemblages in salt marshes of south-central Chile: Relations with tidal inundation time and salinity. Phycological Research, 65(1), 29-37. https://doi.org/10.1111/pre.12156
  48. Sawai, Y., Horton, B. P., Kemp, A. C., Hawkes A.D., Nagumo, T. & Nelson, A. R. (2016). Relationships between diatoms and tidal environments in Oregon and Washington, USA. Diatom Research, 31(1), 17–38. http://doi.org/10.1080/0269249X.2015.1126359
  49. Simsek, K. (2018). Mixed Wastewater use for Culture of Diatom Nitzschia umbonata (Ehrenberg Lange-Bertalot, 1978). International Journal of Research and Innovations in Earth Science, 5(6), 131-135. https://www.ijries.org/index.php/issues?view=publication&task=show&id=80
  50. Soleimani, M., Rutten, L., Maddala, S. P., Wu, H., Eren, E. D., Mezari, B., Schreur-Piet, I., Friedrich, H. & van Benthem, R. A. T. M. (2022). Modifying the thickness, pore size, and composition of diatom frustule in Craspedostauros sp. with Al3+ ions. Scientific Reports, 12(1), 4175. https://doi.org/10.1038/s41598-022-08154-8
  51. Su, Y., Lundholm, N. & Ellegaard, M. (2018). Effects of abiotic factors on the nanostructure of diatom frustules-ranges and variability. Applied Microbiology and Biotechnology, 102(14), 5889–5899. https://doi.org/10.1007/s00253-018-9087-1
  52. Taziki, M., Ahmadzadeh, H., Murry, M. A. & Lyon, S. R. (2015). Nitrate and Nitrite Removal from Wastewater Using Algae. Current Biotechnology, 4(4), 426-440. https://doi.org/10.2174/2211550104666150828193607
  53. Wang, Y., Mu, W., Sun, X., Lu, X., Fan, Y. & Liu, Y. (2020). Physiological response and removal ability of freshwater diatom Nitzschia palea to two organophosphorus pesticides. Chemistry and Ecology, 36(9), 881-902. https://doi.org/10.1080/02757540.2020.1784883
  54. Wang, Y., Liu, S., Wang, J., Yao, Y., Chen, Y., Xu, Q., Zhao, Z. & Chen, N. (2022). Diatom Biodiversity and Speciation Revealed by Comparative Analysis of Mitochondrial Genomes. Frontiers in plant science, 13,749982. https://doi.org/10.3389/fpls.2022.749982
  55. Witkowski, A., Lange-Bertalot, H. & Metzeltin, D. (2000). Diatom flora of marine coasts I. – Iconographia Diatomologica. 7. Publisher: A.R.G. Gantner Verlag K.G. Koeltz Botanical Books, Königstein, 925pp.