Main Article Content

Abstract

The present study was designed to synthesize silver nanoparticles using the Bassia eriophora (gteena) plant and evaluate their antibacterial efficacy against antibiotic-resistant bacterial species. Additionally, the toxicity of these synthesized nanoparticles was assessed. This research was carried out in the laboratories of the College of Education for Pure Sciences at the University of Basra. AgNPs were synthesized using B. eriophora extract as a reducing and capping agent. Hence, it eliminates the need for hazardous chemicals. The characteristics of produced AgNPs were assessed using several methods. These methods include dynamic light scattering (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), Zeta potential test, Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The findings validated the creation of polydispersed and quasi-spherical synthetic nanoparticles with sizes between 39.23 and 60.90 nm. Analytical tests of the active components identified 43 compounds using GC-MS analysis, with arsenous acid tris(trimethylsilyl) ester constituting the greatest proportion at 36.1567%. The AgNPs exhibited significant antimicrobial efficacy against Gram-negative and Gram-positive bacteria, including Proteus mirabilis (20-15 mm), Salmonella spp. (18 mm), Pseudomonas aeruginosa (17-15 mm), Klebsiella pneumoniae (13-13 mm), as well as Shigella spp, and Escherichia coli (15 mm). A human red blood cell lysis assay evaluated the toxicity of nanoparticles. They reveal no hemolysis in the 10 doses tested throughout the experiment. It was determined that AgNPs containing Bassia B. eriophora greatly enhanced their antibacterial properties and cytotoxicity.

Keywords

Children Characterization of nanoparticles Diarrhea Green biosynthesis MDR bacteria

Article Details

How to Cite
Al-Noor, H. H. . . (2025). Synthesis of Silver Nanoparticles Using Bassia eriophora Plant, Testing their Antibacterial Activity and Cytotoxicity. Basrah Journal of Agricultural Sciences, 38(1), 1–19. Retrieved from https://www.bjas.bajas.edu.iq/index.php/bjas/article/view/2510

References

  1. Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M.& Sharghi, H. (2015). The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. Journal of Nanomaterials. 2015. https://doi.org/10.1155/2015/720654
  2. Abdellatif, A. A. H., Mohammed, H. A., Abdulla, M. H., Alsubaiyel, A. M., Mahmood, A., Samman, W. A., Alhaddad, A. A., Al Rugaie, O., Alsharidah, M., Vaali-Mohammed, M. A., Al Hassan, N., & Taha, H. H. (2023). Green synthesized silver nanoparticles using the plant-based reducing agent Matricaria chamomilla induce cell death in colorectal cancer cells. European review for medical and pharmacological sciences, 27(20), 10112–10125. https://doi.org/10.26355/eurrev_202310_34191
  3. Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of advanced research, 7(1), 17–28. https://doi.org/10.1016/j.jare.2015.02.007
  4. Ajayi, E., Afolayan, A. (2017). Green synthesis, characterization, and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Advances in Natural Sciences: Nanoscience and Nanotechnology. http://doi.org/10.1088/2043-6254/aa5cf7
  5. Aljazy, N. A., Al-Mossawi, A. E.-B. H., & Al-Rikabi, A. K. (2019). Study of Antibacterial Activity of some Date Seed Extracts. Basrah Journal of Agricultural Sciences, 32, 247–257. https://doi.org/10.37077/25200860.2019.169
  6. AlKhafaji, M. H., Mohsin, R. H., & Alshaikh Faqri, A. M.. (2024). Food Additive Mediated Biosynthesis of AgNPs with Antimicrobial Activity Against Hypermucoviscous Enterotoxigenic Foodborne Klebsiella pneumoniae. Basrah Journal of Agricultural Sciences, 37(1), 278–295. https://doi.org/10.37077/25200860.2024.37.1.21
  7. Almudhafar, S. M. A., & Al-Hamdani, M. A . (2022). Antibacterial and Anticancer Effects of Silver Nanoparticles Synthesised using Eragrostis tef and Vitellaria paradoxa Seeds Extract. Basrah Journal of Agricultural Sciences, 35(2), 132–159. https://doi.org/10.37077/25200860.2022.35.2.10
  8. Alzubaidi, A. K., Al-Kaabi, W. J., Ali, A. A., Albukhaty, S., Al-Karagoly, H., Sulaiman, G. M., Asiri, M., & Khane, Y. (2023). Green Synthesis and Characterization of Silver Nanoparticles Using Flaxseed Extract and Evaluation of Their Antibacterial and Antioxidant Activities. Applied Sciences, 13(4), 2182. https://doi.org/10.3390/app13042182
  9. Bahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J., & Ahmadian, G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agri-food sector. Journal of Nanobiotechnology, 19(1), 86. https://doi.org/10.1186/s12951-021-00834-3
  10. Chavez-Esquivel, G., Cervantes-Cuevas, H., Ybieta-Olvera, L. F., Castañeda B. M. T., Acosta, D., & Cabello, J. (2021). Antimicrobial activity of graphite oxide doped with silver against Bacillus subtilis, Candida albicans, Escherichia coli, and Staphylococcus aureus by agar well diffusion test: Synthesis and characterization. Materials science & engineering. C, Materials for biological applications, 123, 111934. https://doi.org/10.1016/j.msec.2021.111934
  11. Chougule S. S., Gurme S. T., Jadhav J. P., Dongale T. D., & Tiwari A. P., Low-density polyethylene films incorporated with Biosynthesized silver nanoparticles using Moringa oleifera plant extract for antimicrobial, food packaging, and photocatalytic degradation applications, Journal of Plant Biochemistry and Biotechnology. (2020) 30, no. 1, 208–214. https://doi.org/10.1007/s13562-020-00584-7
  12. Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Frontiers in microbiology, 7, 1831. https://doi.org/10.3389/fmicb.2016.01831
  13. Durán, N., Durán, M., de Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: A new view on mechanistic aspects of antimicrobial activity. Nanomedicine: nanotechnology, biology, and medicine, 12(3), 789–799. https://doi.org/10.1016/j.nano.2015.11.016
  14. Fatima, R., Priya, M., Indurthi, L., Radhakrishnan, V., & Sudhakaran, R. (2020). Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microbial pathogenesis, 138, 103780. https://doi.org/10.1016/j.micpath.2019.103780
  15. Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., & Xing, M. M. (2014). Nanosilver particles in medical applications: synthesis, performance, and toxicity. International journal of nanomedicine, 9, 2399–2407. https://doi.org/10.2147/IJN.S55015
  16. Geethalakshmi, R., & Sarada, D. V. (2012). Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties. International journal of nanomedicine, 7, 5375–5384. https://doi.org/10.2147/IJN.S36516
  17. Gupta, R., & Xie, H. (2018). Nanoparticles in Daily Life: Applications, Toxicity and Regulations. Journal of environmental pathology, toxicology and oncology: official organ of the International Society for Environmental Toxicology and Cancer, 37(3), 209–230. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009
  18. Hamouda, R. A., Hussein, M. H., Abo-Elmagd, R. A., & Bawazir, S. S. (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific reports, 9(1), 13071. https://doi.org/10.1038/s41598-019-49444-y
  19. Hawar S., Al-Smgani H., Al-Kubaisi Z. A., Sulaiman G. M., Dewir Y. H., & Rikisahedew J. J(2022). Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity, Journal of Nanomaterials., 8, 1058119, https://doi.org/10.1155/2022/1058119
  20. He, X. G., Mocek, U., Floss, H. G., Cáceres, A., Girón, L., Buckley, H., Cooney, G., Manns, J., & Wilson, B. W. (1994). An antifungal compound from Solanum nigrescens. Journal of Ethnopharmacology, 43(3), 173–177. https://doi.org/10.1016/0378-8741(94)90039-6
  21. Huang, C. C., Aronstam, R. S., Chen, D. R., & Huang, Y. W. (2010). Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicology in vitro: an international journal associated with BIBRA, 24(1), 45–55. https://doi.org/10.1016/j.tiv.2009.09.007
  22. Jagtap, U. & Bapat, V. (2013). Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Industrial Crops and Products. http://doi.org/10.1016/j.indcrop.2013.01.019
  23. Keat C.L., Aziz, A., Eid, A., Elmarzugi, A.M. (2015). Biosynthesis of nanoparticles and silver nanoparticles. Bioresour. Bioprocess. 2, 47. https://doi.org/10.1186/s40643-015-0076-2
  24. Khan, S., Almarhoon, Z., Bakht, J., Mabkhot, Y., Rauf, A., Shad, A. (2022). Single-Step Acer Pentatomic-Mediated Green Synthesis of Silver Nanoparticles and Their Potential Antimicrobial and Antioxidant Activities. Journal of Nanomaterials. http://doi.org/10.1155/2022/3783420
  25. Lin, P. C., Lin, S., Wang, P. C., & Sridhar, R. (2014). Techniques for physicochemical characterization of nanomaterials. Biotechnology advances, 32(4), 711–726. https://doi.org/10.1016/j.biotechadv.2013.11.006
  26. Marambio‐Jones, C., Hoek, E. (2010). A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. Journal of Nanoparticle Research. 12. 1531-1551. https://doi.org/10.1007/s11051-010-9900-y
  27. Mashwani, Z. U., Khan, T., Khan, M. A., & Nadhman, A. (2015). Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and prospects. Applied microbiology and biotechnology, 99(23), 9923–9934. https://doi.org/10.1007/s00253-015-6987-1
  28. Maxwell, A., Ghate, V., Aranjani, J., & Lewis, S. (2021). Breaking the barriers for the delivery of amikacin: Challenges, strategies, and opportunities. Life sciences, 284, 119883. https://doi.org/10.1016/j.lfs.2021.119883
  29. Mohammed, G.& Hawar, S. (2022). Green Biosynthesis of Silver Nanoparticles from Moringa oleifera Leaves and Its Antimicrobial and Cytotoxicity Activities. International Journal of Biomaterials. 2022. 1-10. https://doi.org/10.1155/2022/4136641
  30. Mustapha, T., Misni, N., Ithnin, N. R., Daskum, A. M., & Unyah, N. Z. (2022). A Review on Plants and Microorganisms Mediated Synthesis of Silver Nanoparticles, Role of Plants Metabolites and Applications. International journal of environmental research and public health, 19(2), 674. https://doi.org/10.3390/ijerph19020674
  31. Nallappan, D., Fauzi, A. N., Krishna, B. S., Kumar, B. P., Reddy, A. V. K., Syed, T., Reddy, C. S., Yaacob, N. S., & Rao, P. V. (2021). Green Biosynthesis, Antioxidant, Antibacterial, and Anticancer Activities of Silver Nanoparticles of Luffa acutangula Leaf Extract. BioMed research international, 2021, 5125681. http://doi.org/10.1155/2021/5125681
  32. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 10913, Cyclomethicone 5. Retrieved July 14, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Cyclomethicone-5.
  33. Norton, J., Abdul Majid, S., Allan, D., Safran, M., Böer, B.&Richer, R. (2009) An Illustrated Checklist of the Flora of Qatar; UNESCO Office in Doha: Doha, Qatar. Gosport, UK: UNESCO Office In Doha; Ashford Colour Press Ltd; 2009.
  34. Palithya, S., Gaddam, S., Kotakadi, V. S, Penchalaneni, J., Golla, N., Krishna, S. B. N., Naidu, C. (2021). Green silver nanoparticle synthesis using Aerva lanata flower extracts and their biomedical applications. Particulate Science and Technology. https://doi.org/10.1080/02726351.2021.1919259
  35. Prabhu, S., Poulose, E.K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters. 2. 10.1186/2228-5326-2-32. https://doi.org/10.1186/2228-5326-2-32
  36. Radhakrishnan, V. S., Reddy Mudiam, M. K., Kumar, M., Dwivedi, S. P., Singh, S. P., & Prasad, T. (2018). Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). International journal of nanomedicine, 13, 2647–2663. https://doi.org/10.2147/IJN.S150648
  37. Rai, M. K., Deshmukh, S. D., Ingle, A. P., & Gade, A. K. (2012). Silver nanoparticles: the powerful nano weapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 112(5), 841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x
  38. Sadeghi, B., & Gholamhoseinpoor, F. (2015). A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 134, 310–315. https://doi.org/10.1016/j.saa.2014.06.046
  39. Safiallah, S., Hamdi, S. M. M., Grigore, M.-N. & Jalili, S. (2017) "Micromorphology and leaf ecological anatomy of Bassia halophyte species (Amaranthaceae) from Iran," Acta Biologica Szegediensis, 61(1), pp. 85–93. Available at: https://abs.bibl.u-szeged.hu/index.php/abs/article/view/2917
  40. Selvaraj, R., Ramesh, V. & Varadavenkatesan, T. (2015). Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity, and hydrogen peroxide sensing capability. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2015.06.023
  41. Shah, M., Nawaz, S., Jan, H., Uddin, N., Ali, A., Anjum, S., Giglioli-Guivarc'h, N., Hano, C., & Abbasi, B. H. (2020). Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities. Materials science & engineering. C, Materials for biological applications, 112, 110889. https://doi.org/10.1016/j.msec.2020.110889
  42. Shareef, A. A., Farhan, F. J ., & Alriyahee, F. A. A. . (2023). Antibacterial Activity of Silver Nanoparticles Composed by Fruit Aqueous Extract of Abelmoschus Esculentus (L.) Moench Alone or in Combination with Antibiotics. Basrah Journal of Agricultural Sciences, 36(2), 144–174. https://doi.org/10.37077/25200860.2023.36.2.12
  43. Shareef, A. A., Hassan, Z. A., Kadhim, M. A., & Al-Mussawi, A. A. (2022). Antibacterial Activity of Silver Nanoparticles Synthesized by Aqueous Extract of Carthamus oxycantha M. Bieb. Against Antibiotics Resistant Bacteria. Baghdad Science Journal, 19(3), 0460-0460. https://doi.org/10.21123/bsj.2022.19.3.0460
  44. Siddiqi, K. S., Husen, A., & Rao, R. A. K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16(1), 14. https://doi.org/10.1186/s12951-018-0334-5
  45. Silva, L. P., Silveira, A. P., Bonatto, C. C., Reis, I. G., & Milreu, P. V. (2017). Silver nanoparticles as antimicrobial agents: Past, present, and future. In Nanostructures for antimicrobial therapy (pp. 577-596). http://doi.org/10.1016/B978-0-323-46152-8.00026-3
  46. Song, J., Kim, H., Jang, Y., & Jang, J. (2013). Enhanced antibacterial activity of silver/poly rhodanine-composite-decorated silica nanoparticles. ACS applied materials & interfaces, 5(22), 11563–11568. https://doi.org/10.1021/am402310u
  47. Vijayaraghavan, K., Nalini, S. P., Prakash, N. U., & Madhankumar, D. (2012). One-step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids and surfaces. B, Biointerfaces, 94, 114–117. https://doi.org/10.1016/j.colsurfb.2012.01.026
  48. Viswanathan, S., Palaniyandi, T., Shanmugam, R., Karunakaran,S., Pandi, M., Abdul Wahab,M.R. et al.(2024). Synthesis, characterization, cytotoxicity, and antimicrobial studies of green synthesized silver nanoparticles using red seaweed Champia parvula. Biomass Conv. Bioref. 14, 7387–7400. https://doi.org/10.1007/s13399-023-03775-z
  49. Widatalla, H. A., Yassin, L. F., Alrasheid, A. A., Rahman Ahmed, S. A., Widdatallah, M. O., Eltilib, S. H., & Mohamed, A. A. (2022). Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale advances, 4(3), 911–915. https://doi.org/10.1039/d1na00509j
  50. Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336
  51. Youssef, F. S., El-Banna, H. A., Elzorba, H. Y., & Galal, A. M. (2019). Application of some nanoparticles in the field of veterinary medicine. International Journal of Veterinary Science and Medicine, 7(1), 78–93. https://doi.org/10.1080/23144599.2019.1691379
  52. Yu D. G. (2007). Formation of colloidal silver nanoparticles stabilized by Na+-poly (gamma-glutamic acid)-silver nitrate complex via chemical reduction process. Colloids and surfaces. B, Biointerfaces, 59(2), 171–178. https://doi.org/10.1016/j.colsurfb.2007.05.007
  53. yusufoglu, H. (2015). Analgesic, antipyretic, nephritic, and antioxidant effects of the aerial parts of Bassia eriophora (Family: Chenopodiaceae) plant on rats. Asian Pacific Journal of Tropical Disease, 5(7), 559-563. https://doi.org/10.1016/S2222-1808(15)60836-2