Main Article Content


There is a growing need to systematically assessment of drifting sand risk using Geo-information and related technologies for speed and accuracy. The drifting sand map in the southern part of Iraq was established with objective of providing the risk areas of soil loss and the methodology for spatial modeling with Wind Erosion Equation (WEQ) and Geo-information techniques. This analysis was carried out using ‘3S’ technologies [Remote Sensing (RS), Geographic Information System (GIS) and Global Position System (GPS)], with the layers extracted and manipulated from available topographic, climatic and soil maps, as well as satellite image (Thematic Mapping (TM) in 2003 and Enhanced Thematic Mapping (ETM) in 2016) and field survey data analyses. Each of the WEQ factors was digitally encoded in a GIS database to establish each factor’s layers. Simultaneously, the overlay operation with the WEQ model on the factor’s layers was digitally performed to produce the sandy degradation class. The study indicated that the severe erosion class covering an area of about 61.9% of the total area is very high with the degraded vegetation and is located in the southwest part of Iraq. Iraq faces serious environmental degradation problems that must be addressed immediately; failure to do so will greatly compound the cost and complexity of later remedial efforts, with environmental degradation beginning even now to pose a major threat to human well-being, especially among the poor.


Drifting sand ‘3S’ technologies WEQ Basrah Province Iraq

Article Details

How to Cite
Jabbar, M. T. ., M. Baer , E. ., & M.S. Al-Atab, S. . (2020). Risk Assessment of Drifting Sand in Agricultural Lands in Basrah Province with the aid of ‘3S’ Techniques. Basrah Journal of Agricultural Sciences, 33(1), 1–16.


  1. Abdulla, H.J. (1990) Rate of sand dune movement during the dry season in the lower Mesopotamian plain. Basrah J. Agric. Sci., 2: 99-107.
  2. Al-Ameri, T.K. & Jassim S.Y. (2011) Environmental changes in the wetlands of Southern Iraq based on palynological studies. Arab J. Geosci., 4: 443-461
  3. Al-Awadhi, J.M. & Misak, R. (2001). The causes and consequences of desertification in Kuwait: A case study and a possible rehabilitation plan. Proceeding of the 1st Saudi Sci. Conf., April 9-11. King Fahad Univ. Petroleum Mineralogy: Dhahran; 229-251.
  4. Al-Dousari, A.; Misak, R. & Shahid, S. (2000). Soil compaction and sealing in Al Salmi area, western Kuwait. Land Deg. Dev., 11: 401-418.;2-4
  5. Al-Farrajii, F.A. (1998). Combating desertification in Iraq. Desert Control Bull., 33: 2-10.
  6. Al Janabi, K.Z.; Ali A.J.; Al-Taie A. & Jack, T.J. (1988). Origin and nature of sand dunes in the alluvial plains of southern Iraq. J. Arid Environ., 14: 27-34.
  7. Awadh S.M.; Ali M.O. & Ali R.A. (2011) Mineralogy and palynology of the Mesopotamian plain sediments, Central Iraq. Arab J. Geosci., 4: 1261-1271
  8. Black, G. R. (1965). Bulk Density. In: Black, C. A.; Evans D. D. & White, J L, eds. Methods of Soil Analysis. Part 1. Agron. 9: 379-390.
  9. Cole, G.W.; Lyles, L. & Hagen, L.J. (1983) A simulation model of daily wind erosion loss. Trans. Am. Soc. Agr. Eng., 26(6): 1758-1765.
  10. Dougramedji J.S. (1999) Aeolian sediment movements in the lower alluvial plain, Iraq. Desert Control Bull., 35: 45-49.
  11. Food and Agriculture Organization (FAO) (1979). A Provisional Methodology for Soil Degradation Assessment. Rome,: 73pp.
  12. Gomes, L.; Arrue, J.L.; Lopez, M.V.;, Sterk, G.; Richard, D.; Gracia, R.; Sabre, M.; Gaudichet, A. & Frangi, J.P. (2003). Wind erosion in a semiarid area of Spain: The WELSONS project. Catena, 52: 235-256.
  13. Hagen, L.J. (1991) A wind erosion prediction system to meet user needs. J. Soil Water Conser.,, 46(2): 106-111.
  14. Howle S. (1998). The long term environmental consequences of the Gulf War in northeastern Kuwait. M. Sc. Thesis. Univ. Massachusetts: Boston: 147pp.
  15. Jabbar, M.T. (2001). Soil loss by wind erosion for three different textured soil treated with polyacrylamide and crude oil, Iraq. J China Univ. Geosci, 2: 113-116.
  16. Jabbar, M.T. (2003). Using remote sensing and GIS techniques to study soil degradation processes in North Shaanxi Province, China. J China Univ. Geosci., 4: 356-362.
  17. Jabbar M.T. & Xiaoling, C. (2006). Land degradation assessment with the aid of geo information techniques. J Earth Surf. Processes Landf., 31: 777-784.
  18. Jabbar, M.T.; Guangdao, H. & Jianguo, C. (2002). Study of sand dunes and their effect on desertification of cultivated lands in Shaanxi Province, China using remote sensing techniques. J. China Univ. Geosci., 3: 234-239.
  19. Jabbar, M.T.; Shi, Z.; Wang, T. & Cai, C. (2006). Vegetation change prediction with geo-information techniques in the three gorges area of China. Pedosphere, 16(4): 457-467. rights and content
  20. Jabbar, M.T. & Zhou, X. (2011). Eco-environmental change detection by using remote sensing and GIS techniques: a case study Basra province, south part of Iraq. Environ. Earth Sci., 64: 1397-1407.
  21. Julien, Y.; Sobrino, J.A. & Jiménez-Muñoz, J.C. (2011). Land use classification from multitemporal landsat imagery using the Yearly Land Cover Dynamics (YLCD) method. Int. J. App. Earth Observ. Geoinform., 13: 711-720.
  22. Lal, R. (2001). Soil degradation by erosion. Land Degrad. Dev., 12: 519-539.
  23. Naqash, A.B. & Shaker, S.N. (1986). Aeolian sedimentation processes in lower Mesopotamian Plain. J. Water Res., 5(1): 486-508.
  24. Nickling, W.G. (1988). The maltation of particle movement by wind. Sedimentology, 35: 499-511.
  25. Okin. G.S. (2005). Dependence of wind erosion on surface heterogeneity, J. Geophys. Res., 110. D11208. doi:10.1029/2004JD005288.
  26. Omar SAS, Bhat NR, Shahid SA, Assem A (2005) Land and vegetation degradation in war-affected areas in the Sabah Al-Ahmad nature reserve of Kuwait: a case study of Umm Ar Rimam. J Arid Environ 62:475–490.
  27. Panebianco, J.E., & Buschiazzo, D.E. (2008). Erosion predictions with the Wind Erosion Equation (WEQ) using different climatic factors. Land Deg. Dev., 19(1): 36-44.
  28. Potter, C. (2016). Analysis of desert sand dune migration patterns from Landsat image time series for the Southern California Desert. J. Remote Sensing GIS, 5: 1-8.
  29. Purevdorj, T.S.;, Tateishi, R.; Ishiyama, T. & Honda, Y. (1998). Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens., 19(18): 3519-3535.
  30. Salman, H.H. & Saadallah, A.S. (1986). Dust fallout in central and southern Iraq. J. Water Res., 5(1): 599-620.
  31. Shahid, S.A.;, Omar, S.A. & Al Ghawas, S. (1999). Indicators of desertification in Kuwait and their possible management. Desert Control Bull., 34: 261–266.
  32. Skidmore, E.L. (1986).Wind Erosion Climatic Erosivity. Climate Change, 9 195-208.
  33. Skidmore, E.L. (1988). Wind Erosion. 203-233. In: Lal, R. (Ed.). Soil Erosion Methods. Soil and Water Conservation Society. 181pp.
  34. USDA (1951). Soil Survey Manual. United States Department of Agriculture, Handbook no. 18, Washington. 603pp. DOI: 10.1002/jpln.19530610213
  35. Woodruff N.P., & Siddoway, F.H. (1965). A Wind Erosion Equation. Proc. Soil Sci. Soc. Am.,. 29(5): 602-608.
  36. Wu, Z. (2003): Aeolian Landform and Sand Control Engineering. Beijing: Science Press, 261-266.
  37. Xiao, J.; Shen, Y.; Tateishi, R. & Bayer, W. (2006). Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. Int. J. Remote Sens., 27(12): 2411–2422.
  38. Xiao, J. H.; Qu, J. J.; Yao, Z. Y.; Pang, Y. J.& Zhang, K. C. (2015): Morphology and formation mechanism of sand shadow dunes on the Qinghai-Tibet Plateau. J.Arid Land, 7: 10-26.
  39. Zachar, D. (1982). Soil Erosion (Development in Soil Science). Amsterdam, Elsevier Sci. Publ. Company. 547 pp.
  40. Zhang, S.; Liu, Y. & Wang, T. (2014): How land use change contributes to reducing soil erosion in the Jialing River Basin, China. Agric. Water Manage., 133: 65-73.
  41. Zhu, Z. & Wang, T. (1993). Trends in desertification and its rehabilitation in China. Desert Control Bull., 22: 27-30.