Main Article Content

Abstract

This study reports the successful establishment of a somatic embryogenesis technique for the mass production of a date palm Jawzi cultivar using shoot tip explants. The shoot tip, leaf primordia, and the ground of apical meristems were utilised as explants in the research. The study involved the utilisation of various types of media. It began with initiation media (IM), which had two stages for inducing embryogenesis. This was followed by multiplication media (MM), then elongation shoot media (EM), and finally rooting media (RM) and acclimatization. Embryo induction in the different media types required 50-53 weeks. The first stage, IM2, (3.0 mg.l-l 2iP, 10.0 mg.l-l NAA and 5.0 mg.l-l 2,4-D) for 12 weeks. This was followed by the second stage, IM3, which lasted for 38-41 weeks and included 1.0 mg.l-l BAP, 1.5 mg.l-l 2iP, and 1.0 mg.l-l NAA. These stages enabled us to achieve the optimal value for embryo induction. Afterward the MM3 (0.5. mg.l-l BAP, 0.5 mg.l-l 2iP and 0.5 mg.l-l KIN) showed the highest percentage of total counts of embryo multiplication, while the highest shoot length was attained on EM1 (1.0. mg.l-l BAP, 1.0 mg.l-l KIN and 0.1 mg.l-l IBA). The results also highlighted that RM1 (0.1 mg.l-l BAP, 0.1 mg.l-l KIN,1.0 mg.l-l NAA and 0.5 mg.l-l IBA) showed the highest roots length and roots number, in conclusion, these findings emphasise the importance of media composition in tissue culture protocols. Evaluating the effects of specific media components on different aspects of plant development can optimise tissue culture protocols for plant propagation.

Keywords

Multiplication Rooting Somatic embryogenesis Tissue culture

Article Details

How to Cite
Ibrahim, A. M. ., Hameed, M. K. ., & Mohammed, A. . (2023). In Vitro Propagation of Date Palm (Phoenix dactylifera L.) Cultivar Jawzi Using Shoot Tip. Basrah Journal of Agricultural Sciences, 36(2), 267–284. https://doi.org/10.37077/25200860.2023.36.2.21

References

  1. Abass, M. H., & Awad, K. M. (2019). A review on date palm (Phoenix dactylifera L.) tissue cultured plants off-typeness in Iraqi laboratories. Basrah Journal For Date Palm Research, 18(2), 1-12.
  2. https://iasj.net/iasj/download/c6abef87918172b4
  3. Abdelghaffar, A. M., Soliman, S. S., Ismail, T. A., Alzohairy, A. M., Latef, A. A. H. A., Alharbi, K., ... & Hassanin, A. A. (2023). In vitro propagation of three date palm (Phoenix dactylifera L.) varieties using immature female inflorescences. Plants, 12(3), 644.
  4. https://doi.org/10.3390/plants12030644
  5. Abdulhafiz, F., Mohammed, A., Kayat, F., Zakaria, S., Hamzah, Z., Reddy Pamuru, R., & Reduan, M. F. H. (2020). Micropropagation of Alocasia longiloba Miq and comparative antioxidant properties of ethanolic extracts of the field-grown plant, in vitro propagated and in vitro-derived callus. Plants, 9(7), 816.
  6. https://doi.org/10.3390/plants9070816
  7. Abul-Soad, A. A. (2011). Micropropagation of date palm using inflorescence explants. Pp, 91-117. In Jain, S., Al-Khayri, J., Johnson, D. (Eds.). Date Palm Biotechnology. Springer: Dordrecht, 745pp.
  8. https://doi.org/10.1007/978-94-007-1318-5_6
  9. Alansi, S. A. L. E. H., Al-Qurainy, F., Nadeem, M., Khan, S., Alshameri, A., Tarroum, M., & Gaafar, A. R. (2020). An efficient micropropagation protocol via indirect organogenesis from callus of economically valuable crop date palm (Phoenix dactylifera L.) cultivars “Sagai and Khalas”. Pakistan Journal of Botany, 52(6), 2021-2030.
  10. https://doi.org/10.30848/PJB2020-6(13)
  11. Al-Asadi, A. Z., Abdulwahid, A. H., & Al-Mayahi, A. M. (2019). The effect of thidiazuron on callus and in vitro shoots development of date palm (Phoenix dactylifera L.) cv. Barhee. Basrah Journal of Agricultural Sciences, 32, 258–265.
  12. https://doi.org/10.37077/25200860.2019.170
  13. Al-Khalifah NS, Askari E, Shanavas Khan AE (2012). Molecular and morphological identification of some elite varieties of date palms grown in Saudi Arabia. Emirates Journal of Food and Agriculture 24(5):456-461.
  14. https://www.ejfa.me/index.php/journal/article/view/913
  15. Al-Khayri, J. M. (2002). Growth, proline accumulation and ion content in sodium chloride stressed callus of date palm. In Vitro Cellular & Developmental Biology –Plant, 38, 79-82.
  16. https://doi.org/10.1079/IVP2001258
  17. Al-Khayri, J. M., Mahdy, E. M. B., Taha, H. S. A., Eldomiaty, A. S.; Abd-Elfattah, M. A., Abdel Latef, A. A.; Rezk, A. A.; Shehata, W. F., Almaghasla, M. I.; Shalaby, T. A., Sattar, M. M., Ghazazawy, H. S., Awad, M.F., Alali, K. M., Jain, S.M., & Hassanain, A. A. (2022) Genetic and morphological diversity assessment of five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers. Plants, 11, 1722.
  18. https://doi.org/10.3390/plants11131722
  19. Al-Mayahi, A. M. W. (2022). The Effect of Phenyl Acetic Acid (PAA) on micropropagation of date palm followed by genetic stability assessment. Journal of Plant Growth Regulation, 41(8), 3127-3137.
  20. https://doi.org/10.1007/s00344-021-10500-5
  21. Al-Qatrani, M. K. J., Al Khalifa, A. A. S., & Obaid, N. A. (2021). Effect of Jasmonic acid on stimulating the growth and development of date palm callus (Phoenix dactylifera L.) cultivar Shukar in vitro under salt stress conditions. IOP Conference Series. Earth and Environmental Science, 923(1), 012017.
  22. https://doi.org/10.1088/1755-1315/923/1/012017
  23. Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.
  24. https://doi.org/10.3389/fpls.2013.00273
  25. Ghareeb, Y. E., Soliman, S. S., Ismail, T. A.; Hassan, M. A., Abdelkader, M. A., Abdel Latef, A. A., Al-Khayri, J. M., Alshamrani, S. M., Safhi, F. A., Awad, M. F., El-Moneim, D. A., & Hassanin, A. A. (2022). Improvement of german chamomile (Matricaria recutita L.) for mechanical harvesting, high flower yield and essential oil content using physical and chemical mutagenesis. Plants, 11, 2940.
  26. https://doi.org/10.3390/plants11212940
  27. Hazzouri, K. M., Flowers, J. M., Nelson, D., Lemansour, A., Masmoudi, K., & Amiri, K. M. (2020). Prospects for the study and improvement of abiotic stress tolerance in date palms in the post-genomics era. Frontiers in Plant Science, 11, 293.
  28. https://doi.org/10.3389/fpls.2020.00293
  29. Hussain, M. I., Farooq, M., & Syed, Q. A. (2020). Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L.)–A review. Food Bioscience, 34, 100509.
  30. https://doi.org/10.1016/j.fbio.2019.100509
  31. Intha, N., & Chaiprasart, P. (2020). Micropropagation of “KL1” date palm (Phoenix dactylifera L.). Agriculture and Natural Resources, 54(1), 79-84.
  32. https://li01.tci-thaijo.org/index.php/anres/article/view/240271
  33. Kadhim, Z. K., & Abdulhussein, M. A. A. (2021). Minimal media strength for in vitro conservation of strawberry (Fragaria ananassa) cultures. Basrah Journal of Agricultural Sciences, 34(2), 1–9.
  34. https://doi.org/10.37077/25200860.2021.34.2.01
  35. Ku, S. S., Woo, H.-A., Shin, M. J., Jie, E. Y., Kim, H., Kim, H.-S., Cho, H. S., Jeong, W.-J., Lee, M.-S., Min, S. R., & Kim, S. W. (2023). Efficient plant regeneration system from leaf explant cultures of Daphne genkwa via somatic embryogenesis. Plants, 12(11), 2175.
  36. https://doi.org/10.3390/plants12112175
  37. Konan, K. E., Durand-Gasselin, T., Kouadio, Y. J., Flori, A., Rival, A., Duval, Y., & Pannetier, C. (2010). In vitro conservation of oil palm somatic embryos for 20 years on a hormone-free culture medium: characteristics of the embryogenic cultures, derived plantlets and adult palms. Plant Cell Reports, 29, 1-13.
  38. https://doi.org/10.1007/s00299-009-0787-y
  39. Maher, T., Ahmad Raus, R., Daddiouaissa, D., Ahmad, F., Adzhar, N. S., Latif, E. S., & Mohammed, A. (2021). Medicinal plants with anti-leukemic effects: A review. Molecules, 26(9), 2741.
  40. https://doi.org/10.3390/molecules26092741
  41. Mahood, H. E. (2021). Effect of plant growth regulators and explant source on the induction of callus of Dianthus caryophyllus L. Basrah Journal of Agricultural Sciences, 34(2), 100–106.
  42. https://doi.org/10.37077/25200860.2021.34.2.08
  43. Mangena, P. (2020). Benzyl adenine in plant tissue culture-succinct analysis of the overall influence in soybean [Glycine max (L.) Merrill.] seed and shoot culture establishment. Journal of Biotech Research, 11.
  44. Mazri, M. A., Belkoura, I., Meziani, R., Es-Saoudy, H., Rachad, F., & Elmaataoui, S. (2019). Impact of osmotica and plant growth regulators on somatic embryogenesis of date palm. Current Agriculture Research Journal, 7(3), 296.
  45. http://doi.org/10.12944/CARJ.7.3.04
  46. Meira, F. S., Luis, Z. G., Cardoso, I., MariÊ, A., & Scherwinski-Pereira, J. E. (2020). Somatic embryogenesis from leaf tissues of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.]. Anais da Academia Brasileira de Ciências, 92(3).
  47. https://doi.org/10.1590/0001-3765202020180709
  48. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue Cultures. Plant Physiology, 15, 473-497.
  49. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  50. Neelakandan, A. K., & Wang, K. (2012). Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Reports, 31, 597-620.
  51. https://doi.org/10.1007/s00299-011-1202-z
  52. Raza, S. H. A., Hassanin, A. A., Dhshan, A. I. M., Abdelnour, S. A., Khan, R., Mei, C., & Zan, L. (2021). In silico genomic and proteomic analyses of three heat shock proteins (HSP70, HSP90-, and HSP90) in even-toed ungulates. Electronic Journal of Biotechnology, 53, 61–70.
  53. https://doi.org/10.1016/j.ejbt.2021.07.002
  54. Raza, S. H. A.; Hassanin, A. A.; Pant, S. D.; Bing, S.; Sitohy, M. Z.; Abdelnour, S. A.; Alotaibi, M. A.; Al-Hazani, T. M., Abd El-Aziz, A. H., Cheng, G., Zan, L. (2022). Potentials, prospects and applications of genome editing technologies in livestock production. Saudi Journal of Biological Sciences. 29, 1928–1935.
  55. https://doi.org/10.1016/j.sjbs.2021.11.037
  56. Rohim, F. M.; El-Wakeel, H., Abd El-Hamid, A. A., Abd El-Moniem, E. A. (2021). The effect of nanoparticles of in vitro propagation of seedling male date palm by immature inflorescences. Egyptian Journal of Chemistry, 65, 627–643.
  57. https://doi.org/10.21608/ejchem.2021.108243.4950
  58. Solangi, N., Abul-Soad, A. A., Markhand, G. S.; Jatoi, M. A., Jatt, T., & Mirani, A. A. (2020). Comparison among different auxins and cytokinins to induce date palm (Phoenix dactylifera L.) somatic embryogenesis from floral buds. Pakistan Journal of Botany, 52, 1243–1249.
  59. http://doi.org/10.30848/PJB2020-4(30)
  60. Solangi, N., Jatoi, M. A., Abul-Soad, A. A., Mirani, A. A., Solangi, M. A., & Markhand, G. S. (2023). Factors influencing somatic embryogenesis and plantlet regeneration of date palm using immature floral buds. Sarhad Journal of Agriculture, 39(2), 323-331.
  61. https://doi.org/10.1007%2Fs13205-017-0676-y
  62. Sun, T., Wang, Y., Zhu, L., Liu, X., Wang, Q., & Ye, J. (2022). Evaluation of somatic embryo production during embryogenic tissue proliferation stage using morphology, maternal genotype, proliferation rate and tissue age of Pinus thunbergii Parl. Journal of Forestry Research, 33(2), 445-454.
  63. https://doi.org/10.1007/s11676-021-01311-1
  64. Taha, R. A., Allam, M. A., Hassan, S. A. M., Bakr, B. M., & Hassan, M. M. (2021). Thidiazuron-induced direct organogenesis from immature inflorescence of three date palm cultivars. Journal of Genetic Engineering and Biotechnology, 19(1), 1-10.
  65. https://doi.org/10.1186%2Fs43141-021-00115-4
  66. Thakur, S., Tiwari, K., & Jadhav, S. (2015). In vitro approaches for conservation of Asparagus racemosus Willd. In Vitro Cellular & Developmental Biology – Plant, 51, 619-625.
  67. https://doi.org/10.1007/s11627-015-9706-9
  68. Yaseen, M., Ahmad, T., Sablok, G., Standardi, A., & Hafiz, I. A. (2013). Role of carbon sources for in vitro plant growth and development. Molecular Biology Reports, 40, 2837-2849.
  69. https://doi.org/10.1007/s11033-012-2299-z