Main Article Content

Abstract

This study aimed to investigate the tolerance level and the use of primers (H2O, KNO3, ascorbic acid and salicylic acid), in mitigating stress in maize in the newly released cultivars (SWAN-LSR-Y, BR9928-OMR-SR-Y and OMR-LSR-SY). Activities of SOD, APX, CAT and GSH and lipid peroxidation were investigated, to measure the biochemical response of the primed maize seeds. Maize seeds primed with KNO3 and ascorbic acid improved germination and anti-oxidative potential against ROS in ameliorating the salinity stress, while salicylic acid slowed germination. The same trend was followed in the seed vigour index and radicle length of seeds primed with ascorbic acid, which recorded the highest values. The control was observed to have the highest seed vigour index, while seeds primed with salicylic acid showed the least vigour index in the maize seeds.  Increased salinity stress showed adverse effects on all growth parameters. Of the maize cultivars tested, SWAN-LSR-Y showed the most tolerance to salinity stress, in terms of germination. Significant high enzymatic activities and lipid peroxidation were recorded in seeds primed with ascorbic acid and KNO3 show their importance in plant metabolic activities.

Keywords

Cultivar Enzymatic activity oxidative stress Priming Salinity

Article Details

How to Cite
Olayinka, B. U. ., Abdulbaki, A. S. ., Lawal , A. R. ., Alsamadany, H. ., Abdulra’uf, L. B. ., Ayinla, A. ., & Odudu, U. F. . (2023). Enhancing Germination and Seedling Growth in Salt Stressed Maize Lines through Chemical Priming. Basrah Journal of Agricultural Sciences, 36(2), 185–198. https://doi.org/10.37077/25200860.2023.36.2.14

References

  1. Abdul‐Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria 1. Crop Science, 13(6), 630–633.
  2. https://doi.org/10.2135/cropsci1973.0011183x001300060013x
  3. Afolabi, O. B., Oloyede, O. I., Olayide, I. I., Obafemi, T. O., Awe, O. J., Afolabi, B. A., & Onikani, A. S. (2015). Antioxidant enhancing ability of different solvents extractable components of Talinum triangulare in some selected Tissue homogenates of Albino Rats -In vitro. Journal of Applied Pharmaceutical Science, 5(9), 056–061.
  4. https://doi.org/10.7324/JAPS.2015.50911
  5. Ajiboye, T. O., Naibi, A. M., Abdulazeez, I. O., Alege, I. O., Mohammed, A. O., Bello, S. A., Yusuf, I. I., Ibitoye, O. B., & Muritala, H. F. (2016). Involvement of oxidative stress in bactericidal activity of 2-(2-nitrovinyl) furan against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Microbial Pathogenesis, 91, 107–114.
  6. https://doi.org/10.1016/j.micpath.2015.11.020
  7. Akter, L., Fakir, O. A., Alam, M. K., Islam, M. U., Chakraborti, P., Alam, M. J., Rashid, M. H., Begum, M., & Kader, M. A. (2018). Amelioration of salinity stress in maize seed germination and seedling growth attributes through seed priming. Open Journal of Soil Science, 8(05), 137–146.
  8. https://doi.org/10.4236/ojss.2018.85011
  9. Ali, L. G., Nulit, R., Ibrahim, M. H., & Yien, C. Y. S. (2021). Efficacy of KNO3, SiO2 and SA priming for improving emergence, seedling growth and antioxidant enzymes of rice (Oryza sativa), under drought. Scientific Reports, 11(1).
  10. https://doi.org/10.1038/s41598-021-83434-3
  11. Chinnusamy, V., Jagendorf, A., & Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45(2), 437–448.
  12. https://doi.org/10.2135/cropsci2005.0437
  13. Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2(DEC).
  14. https://doi.org/10.3389/fenvs.2014.00053
  15. de Oliveira, A. B., Gomes-Filho, E., Enéas-Filho, J., Prisco, J. T., & Alencar, N. L. M. (2012). Seed priming effects on growth, lipid peroxidation, and activity of ROS scavenging enzymes in NaCl-stressed sorghum seedlings from aged seeds. Journal of Plant Interactions, 7(2), 151–159.
  16. https://doi.org/10.1080/17429145.2011.582590
  17. Dolatabadian, A., Sanavy, S. A. M. M., & Chashmi, N. A. (2008). The effects of foliar application of ascorbic acid (vitamin C) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of canola (Brassica napus L.) under conditions of salt stress. Journal of Agronomy and Crop Science, 194(3), 206–213.
  18. https://doi.org/10.1111/j.1439-037X.2008.00301.x
  19. ElSabagh, A., Çiğ, F., Seydoşoğlu, S., Leonardo Battaglia, M., Javed, T., Aamir Iqbal, M., Mubeen, M., Ali, M., Ali, M., Bengisu, G., Konuşkan, Ö., Barutcular, C., Erman, M., Açikbaş, S., Hossain, A., Sohidul Islam, M., Wasaya, A., Ratnasekera, D., Arif, M., Ahmed, Z., & Awad, M. (2021). Salinity Stress in Maize: Effects of Stress and Recent Developments of Tolerance for Improvement. In Goyal, A. K. (Ed.). Cereal Grains - Volume 1.
  20. https://doi.org/10.5772/intechopen.98745
  21. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.
  22. https://doi.org/10.1016/0003-9861(59)90090-6
  23. Etejere, E. O., & Olayinka, B. U. (2014). Seed production , germination , emergence and growth of Tithonia diversifolia (Hemsl) A. Gray as Influenced by Different Sowing Depths and Soil Types. Researchgate.Net, 14(5), 440–444.
  24. https://www.semanticscholar.org/paper/Seed-Production%2C-Germination%2C-Emergence-and-Growth-Etejere-Olayinka/b0cc3d192d8a339da1d217b3b4b07336ca5decb6
  25. Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35(2), 461–481.
  26. https://doi.org/10.1007/s13593-015-0287-0
  27. Hadwan, M. H., & Abed, H. N. (2016). Data supporting the spectrophotometric method for the estimation of catalase activity. Data in Brief, 6, 194–199.
  28. https://doi.org/10.1016/j.dib.2015.12.012
  29. Hamama, H., & Murniati, E. (2010). The Effect of Ascorbic Acid Treatment on Viability and Vigor Maize (Zea mays L.) Seedling under Drought Stress. HAYATI Journal of Biosciences, 17(3), 105–109.
  30. https://doi.org/10.4308/hjb.17.3.105
  31. Hu, L., Huang, Z., Liu, S., & Fu, J. (2012). Growth response and gene expression in antioxidant-related enzymes in two bermudagrass genotypes differing in salt tolerance. Journal of the American Society for Horticultural Science, 137(3), 134–143.
  32. https://doi.org/10.21273/jashs.137.3.134
  33. Jollow, D., Mitchell, J. R., Zampaglione, N., & Gillette, J. R. (1974). Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology, 11(3), 151–169.
  34. https://doi.org/10.1159/000136485
  35. Kazemi, J. S., Aboutalebian, M. A., & Mesgarbashee, M. (2017). Effects of priming and mycorrhiza on improving balance of sodium and potassium and changes of antioxidants in leaves of maize under soil salinity. Journal of Bioscience and Agriculture Research, 14(2), 1210–1221.
  36. https://doi.org/10.18801/jbar.140217.149
  37. Khan, A. Z., Imran, A. M., Khalil, A., Gul, H., Akbar, H., & Wahab, S. (2016). Impact of fertilizer priming on seed germination behavior and vigor of maize. Pure and Applied Biology, 5(4), 744-751.
  38. https://thepab.org/index.php/journal/article/view/2191
  39. Kim, S.-H., Lee, S.-Y., & Heo, J.-Y. (2022). The effect of seed priming on the germination properties of Aruncus dioicus . Seed Science and Technology, 50(2), 221–226.
  40. https://doi.org/10.15258/sst.2022.50.2.05
  41. Kukreja, S., Nandwal, A. S., Kumar, N., Sharma, S. K., Sharma, S. K., Unvi, V., & Sharma, P. K. (2005). Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biologia Plantarum, 49(2), 305–308.
  42. https://doi.org/10.1007/s10535-005-5308-4
  43. Lara, T. S., Lira, J. M. S., Rodrigues, A. C., Rakocevic, M., & Alvarenga, A. A. (2014). Potassium Nitrate Priming Affects the Activity of Nitrate Reductase and Antioxidant Enzymes in Tomato Germination. Journal of Agricultural Science, 6(2).
  44. https://doi.org/10.5539/jas.v6n2p72
  45. Lazim, S. K., & Ramadhan, M. N. (2020). Effect of microwave and UV-C radiation on some germination parameters of barley seed using mathematical models of Gompertz and logistic: Analysis study. Basrah Journal of Agricultural Sciences, 33(2), 28–41.
  46. https://doi.org/10.37077/25200860.2020.33.2.03
  47. Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., & Garnczarska, M. (2016). Seed priming: new comprehensive approaches for an old empirical technique. In Araujo, S. & Balestrazzi, A. (Eds.). New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology.
  48. https://doi.org/10.5772/64420
  49. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410.
  50. https://doi.org/10.1016/S1360-1385(02)02312-9
  51. Moghaddam, M., Farhadi, N., Panjtandoust, M., & Ghanati, F. (2020). Seed germination, antioxidant enzymes activity and proline content in medicinal plant Tagetes minuta under salinity stress. Plant Biosystems, 154(6), 835–842.
  52. https://doi.org/10.1080/11263504.2019.1701122
  53. Mosa, K. A., Ismail, A., & Helmy, M. (2017). Introduction to plant stresses. Pp, 1–19. In Mosa, K. A., Ismail, A., & Helmy, M. (Eds.). Plant stress tolerance: An Integrated Omics Approach. Springer Briefs in Systems Biology, Springer Cham.
  54. https://doi.org/10.1007/978-3-319-59379-1_1
  55. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2), 239–250.
  56. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  57. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867–880.
  58. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  59. Noctor, G., & Foyer, C. H. (1998). Ascorbate and Glutathione: Keeping Active Oxygen under Control. Annual Review of Plant Biology, 49, 249–279.
  60. https://doi.org/10.1146/annurev.arplant.49.1.249
  61. Olayinka, B. U., Abdulkareem, K. A., Abdulbaki, A. S., Alsamadany, H., Alzahrani, Y., Isiaka, K., Ayinla, A., Kolawole, O. S., Idowu, A. O., Odudu, F. U., Ibuowo, M. B., Mustapha, O. T., & Sulyman, A. (2022). Effects of priming on germination and biochemical attributes of three maize lines under nacl stress condition. Bioagro, 34(3), 233–244.
  62. https://doi.org/10.51372/bioagro343.3
  63. Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60(3), 324–349.
  64. https://doi.org/10.1016/j.ecoenv.2004.06.010
  65. Reilly, C. A., & Aust, S. D. (1999). Measurement of Lipid Peroxidation. Current Protocols in Toxicology, 00(1).
  66. https://doi.org/10.1002/0471140856.tx0204s00
  67. Saed-Moocheshi, A., Shekoofa, A., Sadeghi, H., & Pessarakli, M. (2014). Drought and Salt Stress Mitigation by Seed Priming with KNO3 and Urea in Various Maize Hybrids: An Experimental Approach Based on Enhancing Antioxidant Responses. Journal of Plant Nutrition, 37(5), 674–689.
  68. https://doi.org/10.1080/01904167.2013.868477
  69. Sairam, R. K., Srivastava, G. C., Agarwal, S., & Meena, R. C. (2005). Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum, 49(1), 85–91.
  70. https://doi.org/10.1007/s10535-005-5091-2
  71. Sedghi, M., Nemati, A., & Esmaielpour, B. (2010). Effect of seed priming on germination and seedling growth of two medicinal plants under salinity. Emirates Journal of Food and Agriculture, 22(2), 130–139.
  72. https://doi.org/10.9755/ejfa.v22i2.4900
  73. Shehu, A., Alsamadany, H., & Alzahrani, Y. (2019). β-Aminobutyric acid (BABA) priming and abiotic stresses: a review. International Journal of Biosciences (IJB).
  74. https://doi.org/10.12692/10.12692/ijb/14.5.450-459
  75. Shim, I. S., Momose, Y., Yamamoto, A., Kim, D. W., & Usui, K. (2003). Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regulation, 39(3), 285–292.
  76. https://doi.org/10.1023/A:1022861312375
  77. Stavi, I., Thevs, N., & Priori, S. (2021). Soil Salinity and Sodicity in Drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 9.
  78. https://doi.org/10.3389/fenvs.2021.712831
  79. Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Science, 151(1), 59–66.
  80. https://doi.org/10.1016/S0168-9452(99)00197-1
  81. Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), 1–14.
  82. https://doi.org/10.1007/s00425-003-1105-5
  83. Zayneb, C., Lamia, K., Olfa, E., Naïma, J., Douglas Grubb, C., Bassem, K., Hafedh, M., & Amine, E. (2015). morphological, physiological and biochemical impact of ink industry effluent on germination of maize (Zea mays), barley (Hordeum vulgare) and sorghum (Sorghum bicolor). Bulletin of Environmental Contamination and Toxicology, 95(5), 687–693.
  84. https://doi.org/10.1007/s00128-015-1600-y
  85. Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.
  86. https://doi.org/10.1146/annurev.arplant.53.091401.143329