Main Article Content

Abstract

In recent years, nanotechnology has emerged as one of the promising new technologies for pest control. In this study, a screening program was conducted to evaluate the impact of silicon nanoparticles (SiNPs) and silver nanoparticles (AgNPs) on the mortality of the adult stage of Tribolium castanium on wheat grains. The nanoparticles were synthesized using a laser ablation process, and their characterization was performed using Zeta-sizer, UV-visible spectroscopy, X-ray Diffraction, and Transmission Electron Microscopy. Different concentration levels of SiNPs and AgNPs (100 ppm, 200 ppm, 300 ppm, and 400 ppm) were tested to assess their effects on T. castaneum mortality. The LC50 value for SiNPs and AgNPs were calculated at 438.3 and 657.4 ppm NPs, respectively. The feeding method revealed that AgNPs resulted in 40% mortality, while SiNPs resulted in 70% mortality. These findings suggest that the synthesized SiNPs have a greater potential as an alternative option in managing pests in stored products compared to AgNPs at the same exposure time (four days). The results showed that both SiNPs and AgNPs were having a potential effect on adult stage of T. castaneum. This study demonstrated the utility of AgNPs and SiNPs in T.castaneum pest management programs.

Keywords

Nanotechnology Pest control Tribolium castaneum Silicon nanoparticles Silver nanoparticles

Article Details

How to Cite
Salah, S. ., Alyousuf , A. A. ., & Abass , M. H. . (2023). Efficiency of Silicon and Silver Nanoparticles against the Infestation of Tribolium castanium (Herbst) (Coleoptera: Tenebrionidae) on Wheat Grains under Laboratory Conditions. Basrah Journal of Agricultural Sciences, 36(2), 175–184. https://doi.org/10.37077/25200860.2023.36.2.13

References

  1. Al-Emara, M. S., Alyousuf, A. A., & Abass, M. H. (2021). Efficacy of ozone gas against all stages of red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) at different temperatures and exposure periods. Basrah Journal of Agricultural Sciences, 34(2), 240–252.
  2. https://doi.org/10.37077/25200860.2021.34.2.18
  3. Al-Hussine, H. D., & Alyousuf, A. A. (2021). Responses of local wheat varieties to Greenbug Schizaphus graminum and Bird-Cherry Oat Aphid Rhopalosiphum padi infestation. Basrah Journal of Agricultural Sciences, 34(1), 124–138.
  4. https://doi.org/10.37077/25200860.2021.34.1.11
  5. Al-Jabr, A. M. (2006). Toxicity and Repellency of Seven Plant Essential Oils to Oryzaephilus surinamensis (Coleoptera: Silvanidae) and Tribolium castaneum (Coleoptera: Tenebrioidae). Basic and Applied Sciences, 7(1), 49-60.
  6. https://eurekamag.com/research/017/537/017537096.php
  7. Austin, J., Minelli, C., Hamilton, D., Wywijas, M., & Jones, H. J. (2020). Nanoparticle number concentration measurements by multi-angle dynamic light scattering. Journal of Nanoparticle Research, 22, 108.
  8. https://doi.org/10.1007/s11051-020-04840-8
  9. Bhavaniramya, S., Vishnupriya, S., Al-Aboody, M. S., Vijayakumar, R., & Baskaran, D. (2019). Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain & Oil Science and Technology, 2(2), 49–55.
  10. https://doi.org/10.1016/j.gaost.2019.03.001
  11. Campolo, O., Giunti, G., Russo, A., Palmeri, V., & Zappalà, L. (2018). Essential oils in stored product insect pest control. Journal of Food Quality, 2018(Special Issue), 1-18.
  12. https://doi.org/10.1155/2018/6906105
  13. FAO. (2023). GIEWS country brief: The Republic of Iraq.
  14. https://www.fao.org/giews/countrybrief/country.jsp?code=IRQ&lang=en
  15. Raduw, G. G., & Mohammed, A. A (2020) Insecticidal Efficacy of Three Nanoparticles for the Control of Khapra Beetle (Trogoderma granarium) on Different Grains, Journal of Agricultural and Urban Entomology 36(1), 90-100.
  16. https://doi.org/10.3954/1523-5475-36.1.90
  17. Hossein Pour Jajarm, F., Moravvej, G., Modarres Awal, M., & Golmohammadzadeh, S. (2021). Application of a nanoformulation based on essential oil against Ephestia kuehniella larvae: Characterization and bioactivity. Journal of Crop Protection, 4, 745–758.
  18. https://jcp.modares.ac.ir/article-3-47671-en.html
  19. Huang, Y., Liao, M., Yang, Q., Shi, S., Xiao, J., & Cao, H. (2020). Knockdown of NADPH-cytochrome P450 reductase and CYP6MS1 increases the susceptibility of Sitophilus zeamais to terpinen-4-ol. Pesticide Biochemistry and Physiology, 162, 15–22.
  20. https://doi.org/10.1016/J.PESTBP.2019.07.008
  21. Jakinala, P., Lingampally, N., Hameeda, B., Sayyed, R. Z., Khan, M. Y., Elsayed, E. A., & El Enshasy, H. (2021). Correction: Silver nanoparticles from insect wing extract: Biosynthesis and evaluation for antioxidant and antimicrobial potential. PLOS ONE, 16(5), e0252256.
  22. https://doi.org/10.1371/journal.pone.0252256
  23. Jasrotia, P., Nagpal, M., Mishra, C. N., Sharma, A. K., Kumar, S., Kamble, U., Bhardwaj, A. K., Kashyap, P. L., Kumar, S., & Singh, G. P. (2022). Nanomaterials for postharvest management of insect pests: current state and future perspectives. Frontiers in Nanotechnology. 3, 1-19.
  24. https://doi.org/10.3389/fnano.2021.811056
  25. Jiang, H., Wang, J., Song, L., Cao, X., Yao, X., Tang, F., & Yue, Y. (2016). Gc×Gc-tofms analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora l. presl and their insecticidal and repellent activities. Molecules, 21(4), 1-12.
  26. https://doi.org/10.3390/molecules21040423
  27. Li, A. S., Iijima, A., Huang, J., Li, Q. X., & Chen, Y. (2020). Putative mode of action of the monoterpenoids linalool, methyl eugenol, estragole, and citronellal on ligand-gated ion channels. Engineering, 6(5), 541–545.
  28. https://doi.org/10.1016/j.eng.2019.07.027
  29. Liu, H., Guo, S. S., Lu, L., Li, D., Liang, J., Huang, Z. H., Zhou, Y. M., Zhang, W. J., & Du, S. (2021). Essential oil from Artemisia annua aerial parts: composition and repellent activity against two storage pests. Natural Product Research, 35(5), 822–825.
  30. https://doi.org/10.1080/14786419.2019.1599887
  31. Mossa, A. T. H. (2016). Green Pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology, 9(5), 354–378.
  32. https://doi.org/10.3923/jest.2016.354.378
  33. Oliveira, A. P., Santana, A. S., Santana, E. D. R., Lima, A. P. S., Faro, R. R. N., Nunes, R. S., Lima, A. D., Blank, A. F., Araújo, A. P. A., Cristaldo, P. F., & Bacci, L. (2017). Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Industrial Crops and Products, 107, 198–205.
  34. https://doi.org/10.1016/j.indcrop.2017.05.046
  35. Padín, S. B., Fusé, C., Urrutia, M. I., & Dal Bello, G. M. (2013). Toxicity and repellency of nine medicinal plants against Tribolium castaneum in stored wheat. Bulletin of Insectology, 66(1), 45–49.
  36. https://www.cabdirect.org/cabdirect/abstract/20133195982
  37. Padín, S., Dal Bello, G., & Fabrizio, M. (2002). Grain loss caused by Tribolium castaneum, Sitophilus oryzae and Acanthoscelides obtectus in stored durum wheat and beans treated with Beauveria bassiana. Journal of Stored Products Research, 38(1), 69–74.
  38. https://doi.org/10.1016/S0022-474X(00)00046-1
  39. Papanikolaou, N. E., Kavallieratos, N. G., Iliopoulos, V., Evergetis, E., Skourti, A., Nika, E. P., & Haroutounian, S. A. (2022). Essential Oil Coating: Mediterranean Culinary Plants as Grain Protectants against Larvae and Adults of Tribolium castaneum and Trogoderma granarium. Insects, 13(2), 165.
  40. https://doi.org/10.3390/insects13020165
  41. Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., & Galdiero, M. (2014). Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Applied Microbiology and Biotechnology. 98(5), 1951–1961.
  42. https://doi.org/10.1007/s00253-013-5473-x
  43. Rajendran, S., & Sriranjini, V. (2008). Plant products as fumigants for stored-product insect control. Journal of Stored Products Research. 44(2), 126–135.
  44. https://doi.org/10.1016/J.JSPR.2007.08.003
  45. Rouhani, M., Samih, M. A., & Kalamtari, S. (2012). Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). Journal of Entomological Research, 4(4), 297–305.
  46. https://jer.arak.iau.ir/article_523925.html?lang=en
  47. Sial, M. U., Saeed, Q., Rahman, S., & Qayyum, M. F. (2017). Upshot of Food Add-Ons on the Life History and Development of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). African Entomology, 25(1), 37–41.
  48. https://doi.org/10.4001/003.025.0037
  49. SPSS Inc. (2006). SPSS . SPSS15.0 for Windows. SPSS Inc.
  50. Zhang, J., Claverie, J., Chaker, M., & Ma, D. (2017). Colloidal Metal Nanoparticles Prepared by Laser Ablation and their Applications. ChemPhysChem. 18(9), 986–1006.
  51. https://doi.org/10.1002/cphc.201601220