Main Article Content


The experiment was conducted during the winter season of 2017-2018 and 2018-2019 at directorates of agriculture in Al-Zubair district, Basrah, Iraq to study the effect of sodium nitroprusside (SNP) at four concentration (0, 50, 100 and 150) ?M with number of sprays (once and twice) and three cultivars (Pruktor F1, Luna and Rain ball F1) on mineral content of Nitrogen (N), Phosphorous (P), Potassium (K), Sodium (Na), Potassium/Sodium (K+/Na+) ratio, Chloride (Cl-), Sulfur (S) and Iron (Fe) of leaves. Split-Split Plot design was used with three replicates per treatment. The means of treatments were compared by L.S.D. at 0.05 probability. Results indicated that Pruktor F1 had the highest percentage of N, P, K, K+/Na+ ratio for both growing seasons while the highest accumulation of Na and Cl- in Rain ball F1 cultivar. Plants sprayed twice with SNP had a significant increase in P, K, K+/Na+ ratio, S, and Fe comparing with once spray for both growing seasons. PruktorF1 sprayed with SNP at 100 ?M twice time was superior in P, K, K+/Na+ ratio, S and Fe, whereas, the same cultivar at 150 ?M concentration was superior in N for both growing seasons, same cultivar at 100 and 150 ?M sprayed twice time gave the lowest percentage of Na+ and Cl–, respectively. Also Rain ball F1 at control treatment had the highest accumulation of Na and of Cl-.


Sodium nitroprusside Salt stress Nitric oxide Nitrogen Phosphorus Potassium

Article Details

How to Cite
Al-Jarah, T. M. M. ., Jerry, A. N. ., & Jasim, A. M. . (2019). Effect of Sodium Nitroprusside (SNP) on Minerals Content of Cabbage Brassica oleracea var. capitata L. Grown under Salt Stress. Basrah Journal of Agricultural Sciences, 32(2), 44–59.


  1. Agricultural Statistics Directorate (2018). Central Statistical Organization. Min. Planning, Iraq.
  2. Al-Taey, D.K.A.; Al-Janabi, A.H. & Rachid, A.M. (2017). Effect of water salinity and organic & mineral fertilizers on the growth and some contents of leave nutrients of cabbage (Brassica oleracea var. capitate L.). J. Univ. Babylon Pure Appl. Sci., 25(6): 2046- 2064.
  3. Arasimowicz, M. & Floryszak-Wieczorek, J. (2007). Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci., 172: 876-887.
  4. Ashley, M.K.; Grant, M. & Grabov, A. (2006). Plant responses to potassium deficiencies: a role for potassium transport proteins. J. Exp. Bot., 57(2): 425-436.
  5. Ayers, R.S. & Wescot, D.V. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper 29. FAO, Roma, 174pp.
  6. Belgini, M.V. & Lamattina, L. (1999). Nitric oxide counteracts cytotoxic process mediated by reactive oxygen species in plant tissues. Planta, 208: 337-44.
  7. Black, C.A. (1965). Method of Soil Analysis. Part (1). Physical properties. Am. Soc. Agron. Inc. Publisher, Madison, Wisconsin: 770pp.
  8. Connolly, E.; Fett, J.P. & Guerinot, M. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 14: 1347-1357.
  9. Cuartero, J. & Fernande-Munoz, R. (1999). Tomato and salinity. Sci. Horticult., 78: 83-125 .
  10. Dean-Drummond, C.E. (1986). A comparison of regulatory effects of chloride on nitrate uptake, and on chloride uptake into Pisum sativum seedlings. Physiol. Plant, 66: 115-126.
  11. Duogrameji, J. & Al-Rawi, J. (1972). Partical size dispersion method in some Iraqi soil. Zeitschrift für Pflanzenährung und Bodenkunde, 131(1): 38-42.
  12. Furman, N.H. (1962). Standard Method of Chemical Analysis. 6th ed. D. Van Nostrand, Co., Inc., Princeton, N.J.: 365pp.
  13. Graziano, M.; Beligni, M.V.L. & Lamattina, L. (2002). Nitric oxide improves internal iron availability in plants. Plant Physiol., 130: 1852-1859.
  14. Hayat, S.; Yadav, S.; Alyemeni, M.N. & Ahmad, A. (2014). Effect of sodium nitroprusside on the germination and antioxidant activities of tomato (Lycopersicon esculentum Mill). Bulg. J. Agric. Sci., 20(1): 156-160.
  15. Haynes, R.J. (1980). Ion exchange properties of roots and ionic interactions within the root apoplasm: Their role in ion accumulation by plants. Bot. Rev., 46(1): 75-99.
  16. Jabeen, N. & Ahmad, R. (2011). Foliar application of potassium nitrate affects the growth and nitrate reductase activity in sunflower and safflower leaves under salinity. Not. Bot. Hort. Agrob., 39 (2): 172-178.
  17. Jackson, M.L. (1958). Soil chemical analysis. Prentice Hall. Inc. Englewood Cliffs, N. J.: 598pp.
  18. Lin, H.; Sandra, S.S. & Schumaker, K.S. (1997). Salt sensitivity and the activities of the H-ATPase in cotton seedlings. Crop Sci., 37: 190-197.
  19. Lopez-Cantarero, I.; Ruiz, J.M.; Hernandez, J. & Romero, L. (1997). Nitrogen metabolism and yield response to increase in nitrogen-phosphorus fertilization; Improvement in greenhouse cultivation of eggplant (Solanum melongena). J. Agric. Food Chem., 45: 4227-4231.
  20. Martinez, V. & Lauchli, A. (1994) . Salt-induced inhibition of phosphate uptake in plants of cotton (Gossypium hirsutum L.). New Phytol., 125: 609-614.
  21. Meloni, D.A.; Gulotta, M.R.; Martinez, C. A. & Oliva, M.A. ( 2004). The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Braz. J. Plant Physiol., 16(1): 39-46.
  22. Molassiotis, A.; Tanou, G. & Diamantidis, G. (2010). NO says more than ‘YES’ to salt tolerance: salt priming and systemic nitric oxide signaling in plants. Plant Signalling and Behavior, 5: 209-212.
  23. Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Ann. Rev. Plant Biol., 59: 651-681.
  24. Nabi, R.B.S.; Tayade, R.; Hussain, A.; Kulkarni, K.; Imran, Q.M.; Mun, B.G. & Yun, B.W. (2019). Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ. Exp. Bot., 161: 120-133.
  25. Novozamsky, I. & Eck, R. (1977). Total sulphur determination in plant material. Fresen. J. Anal. Chem., 286 (5): 367- 368.
  26. Page, A.L.; Miller, R.H. & Keeney, D.R. (1982). Method of soil and analysis Part 2, 2nded, Agron. 9. Publisher, Madison, Wisconsin: 1158pp.
  27. Pessarakli, M. (1999). Handbook of Plant of Crop Stress. 2nd en., Univ. CRC Press, Boca Raton: 1254pp.
  28. Phocaides, A. (2001). Handbook on perssurized irrigation techniques FAO consultant, Rome, chapter 7, Water quality for irrigation.
  29. Reddy, M.P. & Vora, A.B. (1985). Effect of salinity on protein metabolism in bajra (Pennisetum typhoides S and H) leaves. Indian J. Plant Physiol., 28: 190-195.
  30. Richards, A. (1954). Diagnosis and improvement of saline and alkali soils. Agriculture Handbook, No. 60, USDA, Washington: 160pp.
  31. Santisree, P.; Adimulam, S. S.; Sharma, K.; Bhatnagar-Mathur, P. & Sharma, K. K. (2019). Insights Into the Nitric Oxide Mediated Stress tolerance in plant. 385-406. In Khan, I.M.R.; Reddy, P.S. Ferrante, A. & Khan, N. (Eds.). Plant Signaling Molecular: Role and Regulation Under Stressful Environments. Elsevier: 596pp.
  32. WHO, World Health Organization. (2015). WHO Model List of Essential Medicines (April 2015).19th list.
  33. Zhao, L.Q.; Zhang, F. ; Guo, J.K.; Yang, Y. L.; Li, B.B. & Zhang, L. X. (2004). Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol., 134: 849-857.
  34. Zhu, J.K. (2003). Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol., 6: 441-445.