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Abstract: Kurau River Basin (KRB), which covers an area of 322 km2 and is the 

main drainage artery pouring into Bukit Merah Reservoir (BMR), is located in 

Perak State of Malaysia. The study of rainfall-runoff processes in KRB is 

important because BMR plays a vital role in rice production, flood control, 

ecosystems, and tourism in the region. This study proposes a new approach to 

rainfall-runoff modeling based on the fractional calculus. A dataset of daily 

rainfall and streamflow has been acquired. Then, the standard linear 

autoregressive with exogenous input (ARX) model is identified from the dataset 

in the sense of least square error. We consider the ARX model as a discretized 

differential equation with fractional orders. Such a model with fractional 

derivatives is versatile to represent hysteresis, which is intrinsically linked to the 

real runoff processes in tropical catchment basins like KRB. 

Keywords: Runoff analysis, ARX model, Fractional calculus, Malaysia. 

Introduction 

Runoff analysis in general is to establish an 

input-output relationship between weather 

data and streamflow, including the errors 

between observed and estimated streamflow 

time series in the model structure. According 

to Yeh (1985), a simple stochastic model may 

yield better prediction of hydrological time 

series than a more complex deterministic 

model. Furthermore, hydrological time series 

are non-deterministic in nature and therefore 

cannot be predicted with certainty for future. 

Stochastic models are preferred also in this 

context as the probabilistic limits for 

prediction may readily be obtained. Though a 

stochastic model can be either linear or 

nonlinear, considering probability 

distributions of errors makes it possible that a 

linear stochastic model describes the 

complexity of time series in the real world 

despite its relative simplicity (Lohani et al., 

2012). As a result, linear stochastic models 

have been intensively researched in the 

context of system theory (Unami & Kawachi, 

2005). Among such linear stochastic models, 
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linear autoregressive with exogenous input 

(ARX) models are commonly employed in 

hydrological engineering, in order to consider 

the effect of rainfall as exogenous input on 

streamflow having autoregressive properties. 

Osman et al. (2019) gave an example of such 

application of ARX models to analysis of 

rainfall-runoff processes. 

    The objective of this study is to initiate a 

new approach to rainfall-runoff analysis with 

ARX models based on the fractional calculus. 

The notion of fractional calculus attracts 

attention of scientists in these decades 

because of its potential to model different 

practical phenomena including population 

dynamics (Bushnaq et al., 2018a), HIV/AIDS 

infection (Bushnaq et al., 2018b), and 

infiltration of water into soil (Fernández-Pato 

et al., 2018). A rainfall-runoff model with a 

fractional differential equation has been 

developed in the pioneering work of Guinot et 

al. (2015). In this study, a dataset of daily 

rainfall and streamflow has been firstly 

obtained from a study area referred to as 

Kurau River Basin (KRB). Then, the standard 

linear ARX model is identified from the 

dataset in the sense of least square error. We 

regard the ARX model as a discretized 

differential equation with fractional orders to 

establish its continuous time counterpart. 

Unlike the unit hydrograph theory which has 

been already applied to KRB (Hassan & 

Harun, 2011), such a differential equation 

with fractional derivatives is versatile to 

represent hysteresis, which is intrinsic to the 

real rainfall-runoff processes in large tropical 

catchment basins like KRB. Finally, the 

response of the streamflow to the rainfall is 

evaluated in the frequency domain (Jarad & 

Abdeljawad, 2018).  

 

Materials & Methods 

Description of study area 

KRB is located between 04 51′ N and 05 

10′ N latitude and 100 38′ E to 101 01′ E 

longitude in Perak State of Malaysia, having 

an area of 322 km2 and being the main 

drainage artery pouring into Bukit Merah 

Reservoir (BMR) (Fadhil et al., 2017). 

Analysis of rainfall-runoff processes in KRB 

is important because BMR is the key structure 

for rice production, flood control, ecosystems, 

and tourism in the region (Hamidon et al., 

2015). BMR, constructed in the year 1906 in 

the Northwest of Perak State, Malaysia, is an 

important water source for the Kerian 

Irrigation Scheme (KIS), which is one of the 

country’s eight largest granaries with net 

paddy area of 235.6 km2 (Malaysia DID, 

2011). The total catchment area of BMR is 

682 km2. The KIS receives about 61 % of the 

irrigation water demand from BMR and the 

rest from rainfall. Furthermore, BMR 

provides fresh water to achieve the domestic 

and industrial demands to Kerian District as 

well as Larut Matang District. The Kurau 

River is the largest of the streams filling 

BMR. 

    KRB has two tributaries of Ara and Kurau 

rivers with confluence at Pondok Tanjung 

town (Ismail & Najib, 2011). The land use 

delineated by Hassan et al. (2012) consists of 

forestry 46 % and agriculture 43 %. The half 

of the land is owned by individual farmers, 

which makes it difficult to enforce sound land 

use management policies for this watershed. 

Ghani et al. (2011) described hydraulic details 

of Kurau river. Daily data of rainfall as well 

as daily streamflow records observed at the 

station No. 15007421 near that confluence 

point are obtained from Malaysian authority 
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for a four years period 1991-1994 and a 1 

year period 1998. Fig. 1 is a photo showing 

the landscape of KRB including the 

streamflow sensor.  

 

Fig. (1): The landscape of KRB including 

the streamflow sensor (photo taken on 

August 4, 2017). 

Structure of the ARX model 

The ARX model applied to the KRB assumes 

a linear Markovian input-output relationship 

between rainfall and streamflow. Discrete 

time series with a length n  of observed 

rainfall and specific streamflow discharge are 

denoted by iR  and iQ  (0 )i n  , 

respectively. In order to make the ARX model 

homogeneous, an offset   is introduced to 

define the output variable iz  as 

 i iz Q= +  .  (1) 

Then, the ARX model is written as 

 ( )1 2 1

0

k p

p i p k k i p k k i p i

k
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+ − − + − − + +

=

= + +   (2) 

where p  is the order representing the number 

of lagged time steps (0 )p n  , kK  

(0 2 )k p   are model coefficients, and p ie +   

(0 )i n p  −  are errors. Substituting (1) into 

(2) results in 
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for 0 i n p  − , which comprise a linear 

equations system 
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Assuming that the vector K  of model 

coefficients is time invariant with the 

statistically equilibrium error vector e , the 

square norm 
T

e e  of e  is minimized by the 

least square method computing K  as 

 ( )
1

T TX X X
−

=K Q ,  (7) 

which is a regular linear system. 

Fractional differential equation 

approximating the ARX model 

According to Oldham & Spanier (1974), the 

 -th fractional derivatives of z  as a smooth 
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function of the time t  (day) are approximated 

as 

 0
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for 0 1   with 
1k i p k i p kz z z+ − + − − = −  and 
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1 11kf k k
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which are linear combinations of 
i p kz + −

. Here, 

the fractional orders are chosen as k p =   

for 0, ,k p= , so that an approximation 
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where M  is the ( ) ( )1 1p p+  +  matrix 

whose ( ),i j th entry is ,j p p ic − . Then, a 

nominal rainfall-runoff model with fractional 

derivatives is represented as a transfer 

function 
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Where s  is the complex frequency in the 

Laplace transform. 

 

 

Results & Discussion  

Identification of the ARX model 

The coefficients kK  of the ARX model is 

calculated from the observed data series 

during the 4 years period of 1991-1994 using 

(7) for different values of the order p . This 

procedure is considered as training. Although 

a systematic method such as Akaike 

information criteria (Akaike, 1974) was not 

used, it turned out that the order p  of ARX 

can be taken as small as 6. Indeed, taking the 

order p  as 7, 14, 28, 120, and 360 results in 

similar consequence that the streamflow 

depends mostly on the streamflow the day 

before and the rainfall in the preceding 6 

days. The coefficients kK   for  6p =  are 

shown in Table 1, and the offset   is equal to 

0.0034. Three popular statistical indicators 

assessing the performance of the ARX model 

applied to the data series are evaluated as 
2R 0.71=  (the coefficient of efficiency), 

NSE 0.71=  (Nash-Sutcliffe efficiency), and 

PBIAS 0.00=  (percent bias), implying good 

accuracy in the conventional sense.  

Table (1): Identification results for 

coefficients of the ARX model. 

0K 0.5758 6 0K + 0.0316 

1K −0.0410 6 1K + 0.0137 

2K 0.0773 6 2K + 0.0465 

3K 0.0971 6 3K + 0.1982 

4K 0.0504 6 4K + 0.2384 

5K 0.0274 6 5K + 0.0427 

 

The PBIAS is equal to zero because of a 

property of the least square method employed.  
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Validation of the ARX model 

The identified ARX model is validated with 

the other observed data series during the 1 

year period of 1998. The statistical indicators 

evaluated as 2R 0.75= , NSE 0.74= , and 

PBIAS 2.70=  imply slightly better 

performance in terms of efficiency, and 

therefore the identified ARX model is 

considered acceptable for representing the 

rainfall-runoff process over the discrete time 

domain. 

Nominal rainfall-runoff model with 

fractional derivatives 

The fractional differential equation 

representing the rainfall-runoff process over 

the continuous time domain is finally 

obtained as 

 

1 6

1 6

1 3 1 2

1 3 1 2

2 3 5 6

2 3 5 6

1 2

3 4

5

 22.25 51.16

17.60 18.11

2.663 11.00

6.667

0.0316 0.0137 0.0465

0.1982 0.2384

0.0427 0.0756

t
t

t t

t t

t

t t t

t t

t

d Q
Q

dt

d Q d Q

dt dt

d Q d Q

dt dt

dQ

dt

R R R

R R

R

− −

− −

−

− +

− −

− +

−
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and the gain ( )1P −  of the transfer 

function (12) for the frequency   is plotted 

in Fig. 2. Its principal poles are 

0.08563 0.1413 1 − . It is noteworthy that 

the real part of the principal poles is positive, 

implying that the response of the streamflow 

to the rainfall is unstable. Since the ARX 

model was identified with the least square 

sense, this fractional differential equation (13) 

should be considered as nominal. Due to the 

terms of fractional derivatives, the gain attains 

a notable peak at the frequency around 

16 =  (1/day), implying that the dominant 

lag time of the rainfall-runoff process is about 

16 5   days. The vanishing gain at higher 

frequency domain represents that rainfall 

fluctuations within short period like 1 day 

does not appear in the stream flow 

fluctuations.  

Fig. (2) Gain of the transfer function 

representing the nominal rainfall-runoff 

process. 

Conclusions  

The new approach to rainfall-runoff analysis 

with ARX models based on the fractional 

calculus is advantageous because of its 

capability of representing dynamic causality 

in hydrological phenomena. The linearity of 

the models admits application of the linear 

control theory, and therefore a large variety of 

problems involving feed-back systems can be 

tackled with them. Reservoir operation and 

real-time flood control are major two 

examples of such feed-back systems in water 

resources management. While, the unstable 

fractional differential equation implicates the 

very complex hydrology in KRB. 

    This study exclusively dealt with the 

nominal model, and perturbation structure of 
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actual transfer functions from the nominal one 

shall be researched for further understanding 

of stochastic dynamics in the rainfall-runoff 

processes. 
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